root mean square error sklearn code example

Example 1: how to calculate rmse in linear regression python

actual = [0, 1, 2, 0, 3]
predicted = [0.1, 1.3, 2.1, 0.5, 3.1]

mse = sklearn.metrics.mean_squared_error(actual, predicted)

rmse = math.sqrt(mse)

print(rmse)

Example 2: mean squared error python

from sklearn.metrics import mean_squared_error
mean_squared_error(y_true, y_pred)

Example 3: calculate root mean square error python

def rmse(predictions, targets):
    return np.sqrt(((predictions - targets) ** 2).mean())