seaborn plot 3 variables distplot code example
Example 1: multiple categories on distplot
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
import seaborn as sns
iris = load_iris()
iris = pd.DataFrame(data=np.c_[iris['data'], iris['target']],
columns=iris['feature_names'] + ['target'])
target_0 = iris.loc[iris['target'] == 0]
target_1 = iris.loc[iris['target'] == 1]
target_2 = iris.loc[iris['target'] == 2]
sns.distplot(target_0[['sepal length (cm)']], hist=False, rug=True)
sns.distplot(target_1[['sepal length (cm)']], hist=False, rug=True)
sns.distplot(target_2[['sepal length (cm)']], hist=False, rug=True)
sns.plt.show()
Example 2: mean =[0,0] covariance = [[1,0],[0,100]] ds = np.random.multivariate_normal(mean,covariance,500) dframe = pd.DataFrame(ds, columns=['col1', 'col2']) fig = sns.kdeplot(dframe).get_figure() fig.savefig('kde1.png')
mean =[0,0]
covariance = [[1,0],[0,100]]
ds = np.random.multivariate_normal(mean,covariance,500)
dframe = pd.DataFrame(ds, columns=['col1', 'col2'])
fig = sns.kdeplot(dframe).get_figure()
fig.savefig('kde1.png')