select rows where 1 column is not null pandas code example

Example: pandas return rows that don't have null

# Basic syntax:
# Remove rows that have missing entries in specific column:
df[~df['column'].isnull()]
# Where df['Age'].isnull() returns a Series of booleans that are true
#	when 'column' has an empty row. The ~ negates the Series so that you
#	obtain the rows of df the don't have empty values in 'column'

# Remove rows that have missing entries in any column:
df.dropna()

# Example usage:
import pandas as pd
# Create dataframe
df = pd.DataFrame({'Last_Name': ['Smith', None, 'Brown'], 
                   'First_Name': ['John', 'Mike', 'Bill'],
                   'Age': [35, 45, None]})

print(df)
  Last_Name First_Name   Age
0     Smith       John  35.0
1      None       Mike  45.0
2     Brown       Bill   NaN

df[~df['Age'].isnull()] # Returns:
  Last_Name First_Name   Age
0     Smith       John  35.0
1      None       Mike  45.0

df.dropna() # Returns:
  Last_Name First_Name   Age
0     Smith       John  35.0