Python Spark Cumulative Sum by Group Using DataFrame

To make an update from previous answers. The correct and precise way to do is :

from pyspark.sql import Window
from pyspark.sql import functions as F

windowval = (Window.partitionBy('class').orderBy('time')
             .rowsBetween(Window.unboundedPreceding, 0))
df_w_cumsum = df.withColumn('cum_sum', F.sum('value').over(windowval))
df_w_cumsum.show()

This can be done using a combination of a window function and the Window.unboundedPreceding value in the window's range as follows:

from pyspark.sql import Window
from pyspark.sql import functions as F

windowval = (Window.partitionBy('class').orderBy('time')
             .rangeBetween(Window.unboundedPreceding, 0))
df_w_cumsum = df.withColumn('cum_sum', F.sum('value').over(windowval))
df_w_cumsum.show()
+----+-----+-----+-------+
|time|value|class|cum_sum|
+----+-----+-----+-------+
|   1|    3|    b|      3|
|   2|    3|    b|      6|
|   1|    2|    a|      2|
|   2|    2|    a|      4|
|   3|    2|    a|      6|
+----+-----+-----+-------+