split dataset sklearn code example
Example 1: train test split sklearn
from sklearn.model_selection import train_test_split
X = df.drop(['target'],axis=1).values
y = df['target'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
Example 2: code for test and train split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.33, random_state=42)
Example 3: test_size
This parameter decides the size of the data that has to be split as the test dataset. This is given as a fraction. For example, if you pass 0.5 as the value, the dataset will be split 50% as the test dataset. If you’re specifying this parameter, you can ignore the next parameter.
Example 4: train_test_split example
train_test_split example
Example 5: splitting data into training and testing sklearn
train_features, test_features, train_labels, test_labels =
train_test_split(features, labels)