Example 1: train test split sklearn
from sklearn.model_selection import train_test_split
X = df.drop(['target'],axis=1).values
y = df['target'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
Example 2: train dev test split sklearn
train, validate, test = np.split(df.sample(frac=1), [int(.6*len(df)), int(.8*len(df))])
Example 3: sklearn train_test_split
import numpy as np
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.33, random_state=42
)
Example 4: train dev test split sklearn
X_train, X_test, y_train, y_test
= train_test_split(X, y, test_size=0.2, random_state=1)
X_train, X_val, y_train, y_val
= train_test_split(X_train, y_train, test_size=0.25, random_state=1)
Example 5: scikit learn train test split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
Example 6: train-test split code in pandas
df_permutated = df.sample(frac=1)
train_size = 0.8
train_end = int(len(df_permutated)*train_size)
df_train = df_permutated[:train_end]
df_test = df_permutated[train_end:]