what is the optimal value of alpha for ridge and lasso regression code example
Example 1: ridge regression implementation python
from sklearn.linear_model import Ridge
X_train, X_test, y_train, y_test = train_test_split(X_crime, y_crime,
random_state = 0)
linridge = Ridge(alpha=20.0).fit(X_train, y_train)
Example 2: lasso regression implementation python
from sklearn.linear_model import Lasso
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train, X_test, y_train, y_test = train_test_split(X_data, y_data,
random_state = 0)
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
linlasso = Lasso(alpha=2.0, max_iter = 10000).fit(X_train_scaled, y_train)