why one hot encoder should have a fit or fit transform code example
Example 1: python convert categorical data to one-hot encoding
df_onehot = pd.get_dummies(df, columns=['col_name'], prefix=['one_hot'])
df = pd.DataFrame(['sunny', 'rainy', 'cloudy'], columns=['weather'])
print(df)
weather
0 sunny
1 rainy
2 cloudy
df_onehot = pd.get_dummies(df, columns=['weather'], prefix=['one_hot'])
print(df_onehot)
one_hot_cloudy one_hot_rainy one_hot_sunny
0 0 0 1
1 0 1 0
2 1 0 0
Example 2: onehotencoder = OneHotEncoder(categorical_features = [1]) X = onehotencoder.fit_transform(X).toarray() X = X[:, 1:]
from sklearn.compose import ColumnTransformer
ct = ColumnTransformer([('encoder', OneHotEncoder(), [1])], remainder='passthrough')
X = np.array(ct.fit_transform(X), dtype=np.float)