Question regarding a series that contains logarithms
$$3\ln(n^2+1)-2\ln(n^3+1)=\ln\left( \frac{(n^2+1)^3}{(n^3+1)^2}\right)=\ln\left( \frac{n^6+3n^4+3n^2+1}{n^6+2n^3+1}\right)$$ $$=\ln\left( 1+\frac{3n^4-2n^3+3n^2}{n^6+2n^3+1}\right) \sim \frac{3n^4-2n^3+3n^2}{n^6+2n^3+1} \sim \frac{3}{n^2}$$
Therefore the series converges.
For each $n\in\Bbb N$, you have\begin{align}3\log(n^2+1)-2\log(n^3+1)&=\log\left(\frac{(n^2+1)^3}{(n^3+1)^2}\right)\\&=\log\left(\frac{\left(1+\frac1{n^2}\right)^3}{\left(1+\frac1{n^3}\right)^2}\right).\end{align}But, near $0$, you have$$\log\left(\frac{(1+x^2)^3}{(1+x^3)^2}\right)=3x^2-2x^3+\cdots$$and therefore$$\lim_{n\to\infty}\frac{3\log(n^2+1)-2\log(n^3+1)}{\frac1{n^2}}=3.$$Can you take it from here?
The series at hand can be rewritten as
$$\sum_{n=1}^\infty\left[ 3(\log(n^2+1) - 2\log(n)) - 2(\log(n^3+1)-3\log(n))\right]$$ For any $\alpha > 1$, if we apply MVT to $\log(x)$ over interval $(n^\alpha,n^\alpha+1)$, we find there is a $\xi \in (0,1)$ such that
$$\log(n^\alpha+1) - \alpha\log(n) = \log(n^\alpha+1) - \log(n^\alpha) = \frac{1}{n^\alpha + \xi} \le \frac{1}{n^\alpha}$$ Since these terms are non-negative and $\displaystyle\;\sum_{n = 1}^\infty \frac{1}{n^\alpha} = \zeta(\alpha) < \infty$, series of the form
$$\mathcal{S}_\alpha \stackrel{def}{=} \sum_{n=1}^\infty (\log(n^\alpha+1) - \alpha\log(n))$$ converges. The series at hand is a linear combination of $\mathcal{S}_2$ and $\mathcal{S}_3$ and hence converges.
As a side note, I originally misunderstood the question to one about the evaluating the series. I did evaluate it before realizing the error. I will leave the derivation below in case anyone cares.
When $\alpha$ is a positive integer $\ge 2$, we can express $\mathcal{S}_\alpha$ in terms of gamma function. We will only evaluate $\mathcal{S}_2$ and $\mathcal{S}_3$ for demonstration.
Recall for and $z \in \mathbb{C}$, we have following infinite product expansion: $$\frac{1}{\Gamma(z+1)} = e^{\gamma z}\prod_{n=1}^\infty \left(1+\frac{z}{n}\right)e^{-\frac{z}{n}}$$ where $\gamma$ is the Euler–Mascheroni constant. Furthermore, gamma function satisfies following functional relation: $$\Gamma(1+z) = z\Gamma(z)\quad\text{ and }\quad \Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$$
For $\mathcal{S}_2$, we have
$$\begin{align} \mathcal{S}_2 &= \sum_{n=1}^\infty(\log(n^2 + 1) - 2\log(n)) = \sum_{n=1}^\infty\log\left(1 + \frac{1}{n^2}\right)\\ &= \log\left[\prod_{n=1}^\infty\left(1 + \frac{1}{n^2}\right)\right] = \log\left[\prod_{n=1}^\infty(1 + \frac{i}{n})(1-\frac{i}{n})\right]\\ &\stackrel{(*)}{=} \log\left[ \left(e^{\gamma i}\prod_{n=1}^\infty(1 + \frac{i}{n})e^{-\frac{i}{n}}\right) \left(e^{-\gamma i}\prod_{n=1}^\infty(1 - \frac{i}{n})e^{\frac{i}{n}}\right) \right]\\ &= -\log[\Gamma(1+i)\Gamma(1-i)]\\ &= -\log[ i\Gamma(i)\Gamma(1-i)]\\ &= -\log\left[\frac{\pi i}{\sin(\pi i)}\right]\\ &= \log\sinh(\pi) - \log\pi \end{align} $$ In about derivation, step $(*)$ is possible because $i + (-i) = 0$. This allows us to push extra factors (which cancel among each other) into the product and make it look like that in gamma function's infinite product expansion.
For $\mathcal{S}_3$, the situtation is similar. Let $\omega = e^{\frac{2\pi i}{3}}$ be the cubic root of unity. We will use the fact $\omega^2 + \omega + 1$ to preform the same trick.
$$\begin{align}\mathcal{S_3} &= \sum_{n=1}^\infty \log(n^3+1) - 3\log(n) = \sum_{n=1}\log\left(1 + \frac{1}{n^3}\right)\\ &= \log\left[\prod_{n=1}^\infty\left(1 + \frac{1}{n^3}\right)\right] = \log\left[\prod_{k=0}^2\prod_{n=1}^\infty\left( 1 + \frac{\omega^k}{n}\right)\right]\\ &= \log\left\{\prod_{k=0}^2 \left[e^{\gamma \omega^k}\prod_{n=1}^\infty\left(1 + \frac{\omega^k}{n}\right) e^{-\frac{\omega^k}{n}}\right]\right\}\\ &= -\log(\Gamma(1+1)\Gamma(1+\omega)\Gamma(1+\omega^2))\\ &= -\log(\Gamma(1+\omega)\Gamma(-\omega))\\ &= \log \sin(-\pi\omega) -\log\pi\\ &= \log \cosh\left(\pi\frac{\sqrt{3}}{2}\right) - \log\pi \end{align} $$ Combine these, we find the series at hand converges to $$\begin{align}3\mathcal{S}_2 - 2\mathcal{S}_3 &= 3\log\sinh(\pi) - 2\log\cosh(\frac{\pi\sqrt{3}}{2}) - \log\pi\\ &\approx 2.131247119366045 \end{align}$$