Queue.Queue vs. collections.deque

Queue.Queue and collections.deque serve different purposes. Queue.Queue is intended for allowing different threads to communicate using queued messages/data, whereas collections.deque is simply intended as a datastructure. That's why Queue.Queue has methods like put_nowait(), get_nowait(), and join(), whereas collections.deque doesn't. Queue.Queue isn't intended to be used as a collection, which is why it lacks the likes of the in operator.

It boils down to this: if you have multiple threads and you want them to be able to communicate without the need for locks, you're looking for Queue.Queue; if you just want a queue or a double-ended queue as a datastructure, use collections.deque.

Finally, accessing and manipulating the internal deque of a Queue.Queue is playing with fire - you really don't want to be doing that.


If all you're looking for is a thread-safe way to transfer objects between threads, then both would work (both for FIFO and LIFO). For FIFO:

  • Queue.put() and Queue.get() are thread-safe
  • deque.append() and deque.popleft() are thread-safe

Note:

  • Other operations on deque might not be thread safe, I'm not sure.
  • deque does not block on pop() or popleft() so you can't base your consumer thread flow on blocking till a new item arrives.

However, it seems that deque has a significant efficiency advantage. Here are some benchmark results in seconds using CPython 2.7.3 for inserting and removing 100k items

deque 0.0747888759791
Queue 1.60079066852

Here's the benchmark code:

import time
import Queue
import collections

q = collections.deque()
t0 = time.clock()
for i in xrange(100000):
    q.append(1)
for i in xrange(100000):
    q.popleft()
print 'deque', time.clock() - t0

q = Queue.Queue(200000)
t0 = time.clock()
for i in xrange(100000):
    q.put(1)
for i in xrange(100000):
    q.get()
print 'Queue', time.clock() - t0