R and SPSS difference

Well, are you a decent programmer? If you are, then it's worthwhile to learn R. You can do more with your data, both in terms of manipulation and statistical modeling, than you can with SPSS, and your graphs will likely be better too. On the other hand, if you've never really programmed before, or find the idea of spending several months becoming a programmer intimidating, you'll probably get more value out of SPSS. The level of stuff that you can do with R without diving into its power as a full-fledged programming language probably doesn't justify the effort.

There's another option -- collaborate. Do you know someone you can work with on your project (you don't say whether it's academic or industry, but either way...), who knows R well?


The initial workflow for SPSS involves justifying writing a big fat cheque. R is freely available.

R has a single language for 'scripting', but don't think of it like that, R is really a programming language with great data manipulation, statistics, and graphics functionality built in. SPSS has 'Syntax', 'Scripts' and is also scriptable in Python.

Another biggie is that SPSS squeezes its data into a spreadsheety table structure. Dealing with other data structures is probably very hard, but comes naturally to R. I wouldn't know where to start handling network graph type data in SPSS, but there's a package to do it for R.

Also with R you can integrate your workflow with your reporting by using Sweave - you write a document with embedded bits of R code that generate plots or tables, run the file through the system and out comes the report as a PDF. Great for when you want to do a weekly report, or you do a body of work and then the boss gives you an updated data set. Re-run, read it over, its done.

But you know, your call...


I work at a company that uses SPSS for the majority of our data analysis, and for a variety of reasons - I have started trying to use R for more and more of my own analysis. Some of the biggest differences I have run into include:

  1. Output of tables - SPSS has basic tables, general tables, custom tables, etc that are all output to that nifty data viewer or whatever they call it. These can relatively easily be transported to Word Documents or Excel sheets for further analysis / presentation. The equivalent function in R involves learning LaTex or using a odfWeave or Lyx or something of that nature.
  2. Labeling of data --> SPSS does a pretty good job with the variable labels and value labels. I haven't found a robust solution for R to accomplish this same task.
  3. You mention that you are going to be scripting most of your work, and personally I find SPSS's scripting syntax absolutely horrendous, to the point that I've stopped working with SPSS whenever possible. R syntax seems much more logical and follows programming standards more closely AND there is a very active community to rely on should you run into trouble (SO for instance). I haven't found a good SPSS community to ask questions of when I run into problems.

Others have pointed out some of the big differences in terms of cost and functionality of the programs. If you have to collaborate with others, their comfort level with SPSS or R should play a factor as you don't want to be the only one in your group that can work on or edit a script that you wrote in the future.

If you are going to be learning R, this post on the stats exchange website has a bunch of great resources for learning R: https://stats.stackexchange.com/questions/138/resources-for-learning-r


Here is something that I posted to the R-help mailing list a while back, but I think that it gives a good high level overview of the general difference in R and SPSS:

When talking about user friendlyness of computer software I like the analogy of cars vs. busses:

Busses are very easy to use, you just need to know which bus to get on, where to get on, and where to get off (and you need to pay your fare). Cars on the other hand require much more work, you need to have some type of map or directions (even if the map is in your head), you need to put gas in every now and then, you need to know the rules of the road (have some type of drivers licence). The big advantage of the car is that it can take you a bunch of places that the bus does not go and it is quicker for some trips that would require transfering between busses.

Using this analogy programs like SPSS are busses, easy to use for the standard things, but very frustrating if you want to do something that is not already preprogrammed.

R is a 4-wheel drive SUV (though environmentally friendly) with a bike on the back, a kayak on top, good walking and running shoes in the pasenger seat, and mountain climbing and spelunking gear in the back.

R can take you anywhere you want to go if you take time to leard how to use the equipment, but that is going to take longer than learning where the bus stops are in SPSS.

There are GUIs for R that make it a bit easier to use, but also limit the functionality that can be used that easily. SPSS does have scripting which takes it beyond being a mere bus, but the general phylosophy of SPSS steers people towards the GUI rather than the scripts.