R How to use curly curly with filter or filter_?
{{
only works within functions, with function arguments. Same for ensym()
and other operators starting with en
by the way.
If you're not in a function and you have variable names as strings, you need !!sym()
. The sym()
part transforms the variable name to a code object (a symbol), and the !!
part insert it in place.
As Lionel points out, curly-curly works inside functions. To use it with filter
, you thus have to wrap the call inside a function.
f <- function(.df, v) {
filter(.df, {{ v }} > 0)
}
# Curly-curly provides automatic NSE support
f( A, var2 )
# # A tibble: 3 x 3
# var1 var2 var3
# <dbl> <dbl> <dbl>
# 1 -2.35 0.0645 0.460
# 2 0.429 0.959 -0.694
# 3 -0.890 2.42 -0.936
# Strings have to be first converted to symbols
f( A, !!sym("var3") )
# # A tibble: 3 x 3
# var1 var2 var3
# <dbl> <dbl> <dbl>
# 1 -1.21 -0.477 0.134
# 2 -2.35 0.0645 0.460
# 3 -0.575 -0.511 0.575
Curly-curly is meant to reference a single argument. You can extend it to work with multiple variables through sequential application with the help of purrr::reduce
. (Don't forget to convert your strings into actual variable names first!):
syms(varnames_2) %>% reduce(f, .init=A)
# # A tibble: 1 x 3
# var1 var2 var3
# <dbl> <dbl> <dbl>
# 1 -2.35 0.0645 0.460
If the paste(paste(varnames_2, "> 0"), collapse = " & ")
is the main question. You have to build the filter arguments.
library(tidyverse)
library(rlang)
set.seed(1234)
A <- matrix(rnorm(30),nrow = 10, ncol = 3) %>% as_tibble() %>% set_names(paste("var", seq(1:3), sep = ""))
# with variables as arguments
filter_gt0 <- function(d, ...) {
conds <- ensyms(...)
conds <- map(conds, ~quo(!!.x > 0))
d %>%
filter(!!!conds)
}
A %>%
filter_gt0(var2, var3)
# # A tibble: 1 x 3
# var1 var2 var3
# <dbl> <dbl> <dbl>
# 1 -2.35 0.0645 0.460
# or with variables as input
conds <- quos(var2, var3)
filter_gt0_2 <- function(d, conds) {
conds <- map(conds, ~quo(!!.x > 0))
d %>%
filter(!!!conds)
}
A %>%
filter_gt0_2(conds)
# # A tibble: 1 x 3
# var1 var2 var3
# <dbl> <dbl> <dbl>
# 1 -2.35 0.0645 0.460