\rand inside \forloop creates identical values
The problem is that you're doing that inside a table cell and TeX doesn't like it very much. It's better to build up the token list before doing the table:
\documentclass{article}
\usepackage{lcg,forloop}
\newtoks\dierckxtoks
\newcounter{row_number}\newcounter{col_number}
\begin{document}
\chgrand[first=0, last=4, counter=kids]
\dierckxtoks={}
\forloop{row_number}{1}{\value{row_number} < 6}{%
\forloop{col_number}{1}{\value{col_number} < 5}{%
\rand
\edef\x{\the\dierckxtoks\arabic{kids} &}
\dierckxtoks\expandafter{\x}%
}%
\rand
\edef\x{\the\dierckxtoks\arabic{kids} \noexpand\\}
\dierckxtoks\expandafter{\x}%
}
\begin{tabular}{rrrrr}
\the\dierckxtoks
\end{tabular}
\end{document}
On the other hand, as shown in my first comment, also 444444444 can be a sequence of random numbers. :-)
The mandatory expl3
solution.
\documentclass{article}
\usepackage{lcg}
\newcounter{randnumb}
\usepackage{xparse}
\ExplSyntaxOn
\NewDocumentCommand{\randomtabular}{ O{randnumb} m m m m }
% #1 = counter name (optional default randnumb)
% #2 = lowest value
% #3 = highest value
% #4 = rows
% #5 = columns
{
\chgrand[first=#2, last=#3, counter=#1]
\dierckx_random_tabular:nnn {#1}{#4}{#5}
}
\tl_new:N \l_dierckx_tabular_tl
\cs_new_protected:Npn \dierckx_random_tabular:nnn #1 #2 #3
{
\tl_clear:N \l_dierckx_tabular_tl
\prg_replicate:nn { #2 }
{
\prg_replicate:nn { #3 - 1 }
{
\rand
\tl_put_right:Nx \l_dierckx_tabular_tl { \arabic{#1} & }
}
\rand
\tl_put_right:Nx \l_dierckx_tabular_tl { \arabic{#1} }
\tl_put_right:Nn \l_dierckx_tabular_tl { \\ }
}
\begin{tabular}{*{#3}{r}}
\l_dierckx_tabular_tl
\end{tabular}
}
\ExplSyntaxOff
\begin{document}
\randomtabular{0}{9}{6}{4}
\randomtabular[kids]{0}{4}{5}{5}
\end{document}
A different solution using the random number facility of pgf
:
\documentclass{article}
\usepackage{pgf}
\usepackage{xparse}
\ExplSyntaxOn
\NewDocumentCommand{\randomtabular}{ m m m m }
% #1 = lowest value
% #2 = highest value
% #3 = rows
% #4 = columns
{
\dierckx_random_tabular:nnnn {#1}{#2}{#3}{#4}
}
\tl_new:N \l__dierckx_tabular_tl
\int_new:N \l__dierckx_random_number_int
\cs_new_protected:Npn \dierckx_random_tabular:nnnn #1 #2 #3 #4
{
\tl_clear:N \l_dierckx_tabular_tl
\prg_replicate:nn { #3 }
{
\prg_replicate:nn { #4 - 1 }
{
\dierckx_get_rand:nn { #1 } { #2 }
\tl_put_right:Nx \l_dierckx_tabular_tl { \int_to_arabic:n { \l__dierckx_random_number_int } & }
}
\dierckx_get_rand:nn { #1 } { #2 }
\tl_put_right:Nx \l_dierckx_tabular_tl { \int_to_arabic:n { \l__dierckx_random_number_int } }
\tl_put_right:Nn \l_dierckx_tabular_tl { \\ }
}
\begin{tabular}{*{#3}{r}}
\l_dierckx_tabular_tl
\end{tabular}
}
\cs_new_protected:Npn \dierckx_get_rand:nn #1 #2
{
\pgfmathrandominteger{ \l__dierckx_random_number_int } { #1 } { #2 }
}
\ExplSyntaxOff
\begin{document}
\randomtabular{0}{9}{6}{4}
\bigskip
\randomtabular{0}{4}{5}{5}
\end{document}
There is no optional argument any more, but it doesn't seem to be really necessary.
A variant of the first expl3
solution that pads the number with zeros to have the same length as the highest possible chosen number.
\documentclass{article}
\usepackage{lcg}
\newcounter{randnumb}
\usepackage{xparse}
\ExplSyntaxOn
\NewDocumentCommand{\randomtabular}{ O{randnumb} m m m m }
% #1 = counter name (optional default randnumb)
% #2 = lowest value
% #3 = highest value
% #4 = rows
% #5 = columns
{
\int_set:Nn \l_dierckx_padto_int { \tl_count:n { #3 } }
\chgrand[first=#2, last=#3, counter=#1]
\dierckx_random_tabular:nnn {#1}{#4}{#5}
}
\tl_new:N \l_dierckx_tabular_tl
\tl_new:N \l_dierckx_temp_tl
\int_new:N \l_dierckx_padto_int
\cs_new_protected:Npn \__dierckx_padnumber:nn #1 #2
{
\tl_set:Nx \l_dierckx_temp_tl { \arabic{#1} }
\tl_set:Nx \l_dierckx_temp_tl
{
\prg_replicate:nn { \l_dierckx_padto_int - \tl_count:N \l_dierckx_temp_tl } { 0 }
\l_dierckx_temp_tl
}
\tl_put_right:Nx \l_dierckx_tabular_tl { \l_dierckx_temp_tl #2 }
}
\cs_new_protected:Npn \dierckx_random_tabular:nnn #1 #2 #3
{
\tl_clear:N \l_dierckx_tabular_tl
\prg_replicate:nn { #2 }
{
\prg_replicate:nn { #3 - 1 }
{
\rand
\__dierckx_padnumber:nn { #1 } { & }
}
\rand
\__dierckx_padnumber:nn { #1 } { }
\tl_put_right:Nn \l_dierckx_tabular_tl { \\ }
}
\begin{tabular}{*{#3}{r}}
\l_dierckx_tabular_tl
\end{tabular}
}
\ExplSyntaxOff
\begin{document}
\randomtabular{0}{100000}{6}{4}
\end{document}
I made a quick tikz
solution. You may use \pgfmathsetseed{}
for repeatable results.
\documentclass{article}
\usepackage{tikz}
\begin{document}
\begin{tikzpicture}
\foreach \x in {1,...,5}{
\foreach \y in {1,...,5}{
\pgfmathrandominteger{\a}{0}{4}
\node at (\x/2,\y/2){\a};
}
}
\end{tikzpicture}
\end{document}
result: