Randomly sample from multiple tf.data.Datasets in Tensorflow

if p is a Tensor of probabilities (or unnormalized relative probabilities) where p[i] is the probability that dataset i is chosen, you can use tf.multinomial in conjunction with tf.contrib.data.choose_from_datasets:

# create some datasets and their unnormalized probability of being chosen
datasets = [
    tf.data.Dataset.from_tensors(['a']).repeat(),
    tf.data.Dataset.from_tensors(['b']).repeat(),
    tf.data.Dataset.from_tensors(['c']).repeat(),
    tf.data.Dataset.from_tensors(['d']).repeat()]
p = [1., 2., 3., 4.]  # unnormalized

# random choice function
def get_random_choice(p):
  choice = tf.multinomial(tf.log([p]), 1)
  return tf.cast(tf.squeeze(choice), tf.int64)

# assemble the "choosing" dataset
choice_dataset = tf.data.Dataset.from_tensors([0])  # create a dummy dataset
choice_dataset = choice_dataset.map(lambda x: get_random_choice(p))  # populate it with random choices
choice_dataset = choice_dataset.repeat()  # repeat

# obtain your combined dataset, assembled randomly from source datasets
# with the desired selection frequencies. 
combined_dataset = tf.contrib.data.choose_from_datasets(datasets, choice_dataset)

Note that the dataset needs to be initialized (you can't use a simple make_one_shot_iterator):

choice_iterator = combined_dataset.make_initializable_iterator()
choice = choice_iterator.get_next()
with tf.Session() as sess:
  sess.run(choice_iterator.initializer)
  print ''.join([sess.run(choice)[0] for _ in range(20)])

>> ddbcccdcccbbddadcadb

As of 1.12, tf.data.experimental.sample_from_datasets provides this functionality: https://www.tensorflow.org/api_docs/python/tf/data/experimental/sample_from_datasets

EDIT: Looks like in earlier versions this can be accessed by tf.contrib.data.sample_from_datasets