Reflect a Plot Object
Few examples from the docs on ReflectionTransform used in combination with GeometricTransformation
gr = Plot[ E^x, {x, -3, 2}];
Row[{Show[gr, Plot[x, {x, -3, 7}, PlotStyle -> Black],
gr /. L_Line :> {Red, GeometricTransformation[L, ReflectionTransform[{-1, 1}]]},
PlotRange -> All, ImageSize -> 200],
Show[gr, gr /. L_Line :> {Red, GeometricTransformation[L, ReflectionTransform[{-1, 0}]]}, PlotRange -> All, ImageSize -> 200],
Show[gr, gr /. L_Line :> {Red, GeometricTransformation[L, ReflectionTransform[{0, -1}]]}, PlotRange -> All, ImageSize -> 200]}, Spacer[15]]
cow = ExampleData[{"Geometry3D", "Cow"}, "GraphicsComplex"];
p1 = {0, 0, -0.25161901116371155`};
p2 = {0, 0, 0.25161901116371155`};
Row[{Graphics3D[{EdgeForm[None], Opacity[0.5],
Lighter[ColorData[1, 1], 0.5], cow, Lighter[ColorData[1, 2], 0.5],
GeometricTransformation[cow, #]}, Lighting -> "Neutral",
ImageSize -> Small, Boxed -> False] & /@
{ReflectionTransform[{0, 0, 1}, p1],
ReflectionTransform[{0, 0, 1}, p2],
ReflectionTransform[{1, 0, 0}, p1],
ReflectionTransform[{1, 1, 0}, p1]}}, Spacer[15]]
How about something like this (example shamelessly stolen from the docs)
f[n_, x_] :=
Abs[((1/Pi)^(1/4) HermiteH[n, x])/(E^(x^2/2) Sqrt[2^n n!])]^2
lp = Plot[Evaluate@
Append[Table[f[n, x] + n + 1/2, {n, 0, 7}], x^2/2], {x, 0, 4},
Filling -> Table[n -> n - 1/2, {n, 1, 8}]]
Graphics[FullGraphics[
lp][[1]] /. {x_Real,
y_Real} :> {-x, y},
AspectRatio -> .42*2.380952380952381]
(you said ticks aren't important so I ignored them). This is similar to Sjoerd's suggestion in the comments but for the whole plot.
You can actually use Scale
for this by doing something like
MapAt[Scale[#, {-1, 1}] &, Plot[Sin[x], {x, 0, 2 Pi}] , {1}]