Regularization of integral
One may note that:
$$I=\int_0^\infty\cosh^4(x)~\mathrm dx=\frac1{16}\int_0^\infty e^{4x}+4e^{2x}+6+4e^{-2x}+e^{-4x}~\mathrm dx$$
Using $\displaystyle\int_0^\infty e^{-ax}~\mathrm dx=\frac1a$, we may regularize our integral to
$$I=\int_0^\infty\frac38~\mathrm dx$$
Which may be regularized to $\frac38\zeta(0)=-\frac3{16}$.
Same method for the second integral.