Relative frequencies / proportions with dplyr

You can use count() function, which has however a different behaviour depending on the version of dplyr:

  • dplyr 0.7.1: returns an ungrouped table: you need to group again by am

  • dplyr < 0.7.1: returns a grouped table, so no need to group again, although you might want to ungroup() for later manipulations

dplyr 0.7.1

mtcars %>%
  count(am, gear) %>%
  group_by(am) %>%
  mutate(freq = n / sum(n))

dplyr < 0.7.1

mtcars %>%
  count(am, gear) %>%
  mutate(freq = n / sum(n))

This results into a grouped table, if you want to use it for further analysis, it might be useful to remove the grouped attribute with ungroup().


Try this:

mtcars %>%
  group_by(am, gear) %>%
  summarise(n = n()) %>%
  mutate(freq = n / sum(n))

#   am gear  n      freq
# 1  0    3 15 0.7894737
# 2  0    4  4 0.2105263
# 3  1    4  8 0.6153846
# 4  1    5  5 0.3846154

From the dplyr vignette:

When you group by multiple variables, each summary peels off one level of the grouping. That makes it easy to progressively roll-up a dataset.

Thus, after the summarise, the last grouping variable specified in group_by, 'gear', is peeled off. In the mutate step, the data is grouped by the remaining grouping variable(s), here 'am'. You may check grouping in each step with groups.

The outcome of the peeling is of course dependent of the order of the grouping variables in the group_by call. You may wish to do a subsequent group_by(am), to make your code more explicit.

For rounding and prettification, please refer to the nice answer by @Tyler Rinker.