Remove element from list in pandas dataframe based on value in column
Here's an alternative way of doing it:
In []:
df2 = df.explode('a')
df['a'] = df2.a[df2.a != df2.b].groupby(level=0).apply(list)
df
Out[]:
a b
0 [2, 3, 4, 5, 6] 1
1 [23, 23, 212, 223, 12] 1
list.remove(x) removes the value in-place and returns None. That is why the above code is failing for you. You can also do something like the following.
a = [[1,2,3,4,5,6],[23,23,212,223,1,12]]
b = [1,1]
df = pd.DataFrame(zip(a,b), columns = ['a', 'b'])
for i, j in zip(df.a, df.b):
i.remove(j)
print df
a b
0 [2, 3, 4, 5, 6] 1
1 [23, 23, 212, 223, 12] 1
Assuming row b
only contains one value, then you can try with the following using a list comprehension within a function, and then simply apply it:
import pandas as pd
a = [[1,2,3,4,5,6],[23,23,212,223,1,12]]
b = [1,1]
df = pd.DataFrame(zip(a,b), columns = ['a', 'b'])
def removing(row):
val = [x for x in row['a'] if x != row['b']]
return val
df['c'] = df.apply(removing,axis=1)
print(df)
Output:
a b c
0 [1, 2, 3, 4, 5, 6] 1 [2, 3, 4, 5, 6]
1 [23, 23, 212, 223, 1, 12] 1 [23, 23, 212, 223, 12]
What I will do
s=pd.DataFrame(df.a.tolist(),index=df.index)
df['a']=s.mask(s.eq(df.b,0)).stack().astype(int).groupby(level=0).apply(list)
Out[264]:
0 [2, 3, 4, 5, 6]
1 [23, 23, 212, 223, 12]
dtype: object