remove row from dataframe code example

Example 1: drop columns pandas

df.drop(columns=['B', 'C'])

Example 2: python pandas drop

df = pd.DataFrame(np.arange(12).reshape(3, 4),
...                   columns=['A', 'B', 'C', 'D'])
>>> df
   A  B   C   D
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11

Drop columns
>>> df.drop(['B', 'C'], axis=1)
   A   D
0  0   3
1  4   7
2  8  11
>>> df.drop(columns=['B', 'C'])
   A   D
0  0   3
1  4   7
2  8  11

Example 3: delete a row in pandas dataframe

df.drop(df.index[2])

Example 4: delete row from dataframe python

df.drop(df.index[-2])
df.drop(df.index[[3, 4]])
df.drop(['row_1', 'row_2'])
df.drop('column_1', axis=1)
df[df.name != 'cell']

Example 5: pandas how to delete a row

>>> df
   A  B   C   D
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11

Drop a row by index

    df.drop([0, 1])
       A  B   C   D
    2  8  9  10  11

Drop columns

    df.drop(columns=['B', 'C'])
       A   D
    0  0   3
    1  4   7
    2  8  11

Example 6: remove rows from a dataframe that are present in another dataframe?

df.loc[~((df.Product_Num.isin(df2['Product_Num']))&(df.Price.isin(df2['Price']))),:]
Out[246]: 
    Product_Num     Date  Description  Price
0            10   1-1-18  FruitSnacks   2.99
1            10   1-2-18  FruitSnacks   2.99
4            10  1-10-18  FruitSnacks   2.99
5            45   1-1-18       Apples   2.99
6            45   1-3-18       Apples   2.99
7            45   1-5-18       Apples   2.99
11           45  1-15-18       Apples   2.99