Remove unnecessary parentheses

Mathematica, 105 97 91 bytes

-6 bytes thanks to Roman!

a=StringReplace;ToString@ToExpression@a[#,{"*"->"**","+"->"~~"}]~a~{" ** "->"*","~~"->"+"}&

Replaces + and * with ~~ (StringExpression) and ** (NonCommutativeMultiply) respectively, evaluates it, stringifies it, and replaces the operators back.


JavaScript (ES6) 163 178

Edit 15 bytes saved thx @IsmaelMiguel

a=>eval(`s=[]${_=';for(b=0;a!=b;a=b.replace(/'}\\(([^()]*)\\)(?=(.?))/,(x,y,z,p)=>~y.indexOf('+')?-s.push(b[p-1]=='*'|z=='*'?x:y):y))b=a;${_}-\\d+/,x=>s[~x]))b=a`)

Less golfed

a=>{
  for(s=[],b='';
      a!=b;
      a=b.replace(/\(([^()]*)\)(?=(.?))/,(x,y,z,p)=>y.indexOf('+')<0?y:-s.push(b[p-1]=='*'|z=='*'?x:y)))
    b=a;
  for(b=0;
      a!=b;
      a=b.replace(/-\d+/,x=>s[~x]))
    b=a;
  return a
}

Test

f=a=>eval(`s=[]${_=';for(b=0;a!=b;a=b.replace(/'}\\(([^()]*)\\)(?=(.?))/,(x,y,z,p)=>~y.indexOf('+')
?-s.push(b[p-1]=='*'|z=='*'?x:y)
:y))b=a;${_}-\\d+/,x=>s[~x]))b=a`)

console.log=x=>O.textContent+=x+'\n'

test=`(4*12)+11         ==>    4*12+11
(1+2)*3           ==>    (1+2)*3
3*(4*5)           ==>    3*4*5
((((523))))       ==>    523
(1+1)             ==>    1+1
1*(2*(3+4)*5)*6   ==>    1*2*(3+4)*5*6
1*(2+3)           ==>    1*(2+3)
0*(1+0)           ==>    0*(1+0)
(((2+92+82)*46*70*(24*62)+(94+25))+6)    ==>    (2+92+82)*46*70*24*62+94+25+6`

test.split`\n`.forEach(r=>{
  var t,k,x
  [t,,k]=r.match(/\S+/g)
  x=f(t)
  console.log((x==k?'OK ':'KO ')+t+' -> '+x+(x==k?'':' expected '+k))
})
<pre id=O></pre>


Python3 + PEG implementation in Python, 271 bytes

import peg
e=lambda o,m=0:o.choice and str(o)or(m and o[1][1]and"("+e(o[1])+")"or e(o[1]))if hasattr(o,"choice")else o[1]and e(o[0],1)+"".join(str(x[0])+e(x[1],1)for x in o[1])or e(o[0])
print(e(peg.compile_grammar('e=f("+"f)*f=p("*"p)*p="("e")"/[0-9]+').parse(input())))

A while back I made a PEG implementation in Python. I guess I can use that here.

Parses the expression into a tree, and only keeps parenthesis if the child is addition, and the parent is multiplication.