removing loops with numpy.einsum
Your function seems to be equivalent to the following:
# this is so called broadcasting
s = np.sinc(q * r[...,None]/np.pi)
np.einsum('iq,jq,ijq->q',f,f,s)
Which took about 20 seconds on my system, with most of the time to allocate s
.
Let's test it for a small sample:
np.random.seed(1)
r = np.random.random(size=(10,10))
q = np.linspace(0,1,1001)
f = np.random.random(size=(r.shape[0],q.shape[0]))
(np.abs(np.einsum('iq,jq,ijq->q',f,f,s) - myfunc(r,q,f)) < 1e-6).all()
# True
Since np.sinc
is not a linear operator, I'm not quite sure how we can further reduce the run time.
That sinc
is the actual bottleneck, as also mentioned in @Quang Hoang's post. We will make use of the einsum
expression from there to end up with one way like so -
Now, from docs
, numpy.sinc(x)
is : \sin(\pi x)/(\pi x)
. We will make use of it -
v = q*r[...,None]
p = np.sin(v)/v
mask = (q==0) | (r==0)[...,None]
p[mask] = 1
out = np.einsum('iq,jq,ijq->q',f,f,p)
Also, for large data, we can leverage multi-cores with numexpr
, like so -
import numexpr as ne
p = ne.evaluate('sin(q*r3D)/(q*r3D)', {'r3D':r[...,None]})
mask = (q==0) | (r==0)[...,None]
p[mask] = 1
out = np.einsum('iq,jq,ijq->q',f,f,p)
Timings with 500 length arrays -
In [12]: r = np.random.random(size=(500,500))
...: q = np.linspace(0,1,501)
...: f = np.random.random(size=(r.shape[0],q.shape[0]))
# Original soln with einsum
In [15]: %%timeit
...: nr = r.shape[0]
...: nq = q.shape[0]
...: y = np.zeros(nq)
...: for ri in range(nr):
...: for qi in range(nq):
...: y[qi] += np.einsum('i,i',f[ri,qi]*f[:,qi],np.sinc(q[qi]*r[ri,:]/np.pi))
9.75 s ± 977 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
# @Quang Hoang's soln
In [16]: %%timeit
...: s = np.sinc(q * r[...,None]/np.pi)
...: np.einsum('iq,jq,ijq->q',f,f,s)
2.75 s ± 7.82 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [17]: %%timeit
...: p = ne.evaluate('sin(q3D*r)/(q3D*r)', {'q3D':q[:,None,None]})
...: mask = (q==0)[:,None,None] | (r==0)
...: p[mask] = 1
...: out = np.einsum('iq,jq,qij->q',f,f,p)
1.39 s ± 23.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [18]: %%timeit
...: v = q*r[...,None]
...: p = np.sin(v)/v
...: mask = (q==0) | (r==0)[...,None]
...: p[mask] = 1
...: out = np.einsum('iq,jq,ijq->q',f,f,p)
2.11 s ± 7.42 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
With larger data, we expect numexpr
one to perform better, as long as we don't run into out-of-memory cases.
The simplest way (and likely the most performant) is to use an compiler, for example Numba. Since this function depends on the sinc
function, also make sure that you have Intel SVML installed.
Example
import numpy as np
import numba as nb
@nb.njit(fastmath=True,parallel=False,error_model="numpy",cache=True)
def myfunc(r, q, f):
nr = r.shape[0]
nq = q.shape[0]
y = np.zeros(nq)
for ri in range(nr):
for rj in range(nr):
for qi in range(nq):
y[qi] += f[ri,qi]*f[rj,qi]*np.sinc(q[qi]*r[ri,rj]/np.pi)
return y
@nb.njit(fastmath=True,parallel=True,error_model="numpy",cache=True)
def myfunc_opt(r, q, f):
nr = r.shape[0]
nq = q.shape[0]
y = np.empty(nq)
#for contiguous memory access in the loop
f_T=np.ascontiguousarray(f.T)
for qi in nb.prange(nq):
acc=0
for ri in range(nr):
for rj in range(nr):
acc += f_T[qi,ri]*f_T[qi,rj]*np.sinc(q[qi]*r[ri,rj]/np.pi)
y[qi]=acc
return y
@nb.njit(fastmath=True,parallel=True,error_model="numpy",cache=True)
def myfunc_opt_2(r, q, f):
nr = r.shape[0]
nq = q.shape[0]
y = np.empty(nq)
f_T=np.ascontiguousarray(f.T)
for qi in nb.prange(nq):
acc=0
for ri in range(nr):
for rj in range(nr):
#Test carefully!
if q[qi]*r[ri,rj]!=0.:
acc += f_T[qi,ri]*f_T[qi,rj]*np.sin(q[qi]*r[ri,rj])/(q[qi]*r[ri,rj])
else:
acc += f_T[qi,ri]*f_T[qi,rj]
y[qi]=acc
return y
def numpy_func(r, q, f):
s = np.sinc(q * r[...,None]/np.pi)
return np.einsum('iq,jq,ijq->q',f,f,s)
Timings with small arrays
r = np.random.random(size=(500,500))
q = np.linspace(0,1,501)
f = np.random.random(size=(r.shape[0],q.shape[0]))
%timeit y = myfunc(r, q, f)
#765 ms ± 1.85 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit y = myfunc_opt(r, q, f)
#158 ms ± 2.59 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit y = myfunc_opt_2(r, q, f)
#51.5 ms ± 1.17 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit y = numpy_func(r, q, f)
#3.81 s ± 61.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
print(np.allclose(numpy_func(r, q, f),myfunc(r, q, f)))
#True
print(np.allclose(numpy_func(r, q, f),myfunc_opt(r, q, f)))
#True
print(np.allclose(numpy_func(r, q, f),myfunc_opt_2(r, q, f)))
Timings with larger arrays
r = np.random.random(size=(1000,1000))
q = np.linspace(0,1,1001)
f = np.random.random(size=(r.shape[0],q.shape[0]))
%timeit y = myfunc(r, q, f)
#6.1 s ± 4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit y = myfunc_opt(r, q, f)
#1.26 s ± 18.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit y = myfunc_opt_2(r, q, f)
#397 ms ± 2.69 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)