Renaming column names of a DataFrame in Spark Scala

If structure is flat:

val df = Seq((1L, "a", "foo", 3.0)).toDF
df.printSchema
// root
//  |-- _1: long (nullable = false)
//  |-- _2: string (nullable = true)
//  |-- _3: string (nullable = true)
//  |-- _4: double (nullable = false)

the simplest thing you can do is to use toDF method:

val newNames = Seq("id", "x1", "x2", "x3")
val dfRenamed = df.toDF(newNames: _*)

dfRenamed.printSchema
// root
// |-- id: long (nullable = false)
// |-- x1: string (nullable = true)
// |-- x2: string (nullable = true)
// |-- x3: double (nullable = false)

If you want to rename individual columns you can use either select with alias:

df.select($"_1".alias("x1"))

which can be easily generalized to multiple columns:

val lookup = Map("_1" -> "foo", "_3" -> "bar")

df.select(df.columns.map(c => col(c).as(lookup.getOrElse(c, c))): _*)

or withColumnRenamed:

df.withColumnRenamed("_1", "x1")

which use with foldLeft to rename multiple columns:

lookup.foldLeft(df)((acc, ca) => acc.withColumnRenamed(ca._1, ca._2))

With nested structures (structs) one possible option is renaming by selecting a whole structure:

val nested = spark.read.json(sc.parallelize(Seq(
    """{"foobar": {"foo": {"bar": {"first": 1.0, "second": 2.0}}}, "id": 1}"""
)))

nested.printSchema
// root
//  |-- foobar: struct (nullable = true)
//  |    |-- foo: struct (nullable = true)
//  |    |    |-- bar: struct (nullable = true)
//  |    |    |    |-- first: double (nullable = true)
//  |    |    |    |-- second: double (nullable = true)
//  |-- id: long (nullable = true)

@transient val foobarRenamed = struct(
  struct(
    struct(
      $"foobar.foo.bar.first".as("x"), $"foobar.foo.bar.first".as("y")
    ).alias("point")
  ).alias("location")
).alias("record")

nested.select(foobarRenamed, $"id").printSchema
// root
//  |-- record: struct (nullable = false)
//  |    |-- location: struct (nullable = false)
//  |    |    |-- point: struct (nullable = false)
//  |    |    |    |-- x: double (nullable = true)
//  |    |    |    |-- y: double (nullable = true)
//  |-- id: long (nullable = true)

Note that it may affect nullability metadata. Another possibility is to rename by casting:

nested.select($"foobar".cast(
  "struct<location:struct<point:struct<x:double,y:double>>>"
).alias("record")).printSchema

// root
//  |-- record: struct (nullable = true)
//  |    |-- location: struct (nullable = true)
//  |    |    |-- point: struct (nullable = true)
//  |    |    |    |-- x: double (nullable = true)
//  |    |    |    |-- y: double (nullable = true)

or:

import org.apache.spark.sql.types._

nested.select($"foobar".cast(
  StructType(Seq(
    StructField("location", StructType(Seq(
      StructField("point", StructType(Seq(
        StructField("x", DoubleType), StructField("y", DoubleType)))))))))
).alias("record")).printSchema

// root
//  |-- record: struct (nullable = true)
//  |    |-- location: struct (nullable = true)
//  |    |    |-- point: struct (nullable = true)
//  |    |    |    |-- x: double (nullable = true)
//  |    |    |    |-- y: double (nullable = true)

For those of you interested in PySpark version (actually it's same in Scala - see comment below) :

    merchants_df_renamed = merchants_df.toDF(
        'merchant_id', 'category', 'subcategory', 'merchant')

    merchants_df_renamed.printSchema()

Result:

root
|-- merchant_id: integer (nullable = true)
|-- category: string (nullable = true)
|-- subcategory: string (nullable = true)
|-- merchant: string (nullable = true)