Replace invalid values with None in Pandas DataFrame

I prefer the solution using replace with a dict because of its simplicity and elegance:

df.replace({'-': None})

You can also have more replacements:

df.replace({'-': None, 'None': None})

And even for larger replacements, it is always obvious and clear what is replaced by what - which is way harder for long lists, in my opinion.


Actually in later versions of pandas this will give a TypeError:

df.replace('-', None)
TypeError: If "to_replace" and "value" are both None then regex must be a mapping

You can do it by passing either a list or a dictionary:

In [11]: df.replace('-', df.replace(['-'], [None]) # or .replace('-', {0: None})
Out[11]:
      0
0  None
1     3
2     2
3     5
4     1
5    -5
6    -1
7  None
8     9

But I recommend using NaNs rather than None:

In [12]: df.replace('-', np.nan)
Out[12]:
     0
0  NaN
1    3
2    2
3    5
4    1
5   -5
6   -1
7  NaN
8    9