Replace values in a dataframe based on lookup table

Anytime you have two separate data.frames and are trying to bring info from one to the other, the answer is to merge.

Everyone has their own favorite merge method in R. Mine is data.table.

Also, since you want to do this to many columns, it'll be faster to melt and dcast -- rather than loop over columns, apply it once to a reshaped table, then reshape again.

library(data.table)

#the row names will be our ID variable for melting
setDT(table, keep.rownames = TRUE) 
setDT(lookUp)

#now melt, merge, recast
# melting (reshape wide to long)
table[ , melt(.SD, id.vars = 'rn')     
       # merging
       ][lookup, new_value := i.class, on = c(value = 'pet') 
         #reform back to original shape
         ][ , dcast(.SD, rn ~ variable, value.var = 'new_value')]
#    rn      P1      P2      P3
# 1:  1  mammal reptile    bird
# 2:  2 reptile    bird  mammal
# 3:  3    bird  mammal reptile

In case you find the dcast/melt bit a bit intimidating, here's an approach that just loops over columns; dcast/melt is simply sidestepping the loop for this problem.

setDT(table) #don't need row names this time
setDT(lookUp)

sapply(names(table), #(or to whichever are the relevant columns)
       function(cc) table[lookUp, (cc) := #merge, replace
                            #need to pass a _named_ vector to 'on', so use setNames
                            i.class, on = setNames("pet", cc)])

Another options is a combination of tidyr and dplyr

library(dplyr)
library(tidyr)
table %>%
   gather(key = "pet") %>%
   left_join(lookup, by = "pet") %>%
   spread(key = pet, value = class)

You posted an approach in your question which was not bad. Here's a smiliar approach:

new <- df  # create a copy of df
# using lapply, loop over columns and match values to the look up table. store in "new".
new[] <- lapply(df, function(x) look$class[match(x, look$pet)])

An alternative approach which will be faster is:

new <- df
new[] <- look$class[match(unlist(df), look$pet)]

Note that I use empty brackets ([]) in both cases to keep the structure of new as it was (a data.frame).

(I'm using df instead of table and look instead of lookup in my answer)


Make a named vector, and loop through every column and match, see:

# make lookup vector with names
lookUp1 <- setNames(as.character(lookUp$class), lookUp$pet)
lookUp1    
#      cat    lizard    parrot 
# "mammal" "reptile"    "bird" 

# match on names get values from lookup vector
res <- data.frame(lapply(df1, function(i) lookUp1[i]))
# reset rownames
rownames(res) <- NULL

# res
#        P1      P2      P3
# 1  mammal reptile    bird
# 2 reptile    bird  mammal
# 3    bird  mammal reptile

data

df1 <- read.table(text = "
       P1     P2     P3
 1    cat lizard parrot
 2 lizard parrot    cat
 3 parrot    cat lizard", header = TRUE)

lookUp <- read.table(text = "
      pet   class
 1    cat  mammal
 2 lizard reptile
 3 parrot    bird", header = TRUE)