Reshape wide to long in pandas

Update

As George Liu has shown in another answer, pd.melt is the idiomatic, flexible and fast solution to this problem. Do not use unstack for this.


unstack returns a series with a multiindex:

    In [38]: df.unstack()
    Out[38]: 
        date 
    AA  05/03    1
        06/03    4
        07/03    7
        08/03    5
    BB  05/03    2
        06/03    5
        07/03    8
        08/03    7
    CC  05/03    3
        06/03    6
        07/03    9
        08/03    1
    dtype: int64

You can call reset_index on the returning series:

In [39]: df.unstack().reset_index() 
Out[39]:        
        
    level_0 date    0
0   AA      05-03   1
1   AA      06-03   4
2   AA      07-03   7
3   AA      08-03   5
4   BB      05-03   2
5   BB      06-03   5
6   BB      07-03   8
7   BB      08-03   7
8   CC      05-03   3
9   CC      06-03   6
10  CC      07-03   9
11  CC      08-03   1

Or construct a dataframe with a multiindex:

In [40]: pd.DataFrame(df.unstack())     
Out[40]:        
        
            0
    date    
AA  05-03   1
    06-03   4
    07-03   7
    08-03   5
BB  05-03   2
    06-03   5
    07-03   8
    08-03   7
CC  05-03   3
    06-03   6
    07-03   9
    08-03   1

Use pandas.melt to transform from wide to long:

df = pd.DataFrame({
    'date' : ['05/03', '06/03', '07/03', '08/03'],
    'AA' : [1, 4, 7, 5],
    'BB' : [2, 5, 8, 7],
    'CC' : [3, 6, 9, 1]
}).set_index('date')
df

        AA  BB  CC
date            
05/03   1   2   3
06/03   4   5   6
07/03   7   8   9
08/03   5   7   1

To convert, we just need to reset the index and then melt:

df = df.reset_index()
pd.melt(df, id_vars='date', value_vars=['AA', 'BB', 'CC'])

this is the final result:

    date variable value
0   05/03   AA  1
1   06/03   AA  4
2   07/03   AA  7
3   08/03   AA  5
4   05/03   BB  2
5   06/03   BB  5
6   07/03   BB  8
7   08/03   BB  7
8   05/03   CC  3
9   06/03   CC  6
10  07/03   CC  9
11  08/03   CC  1