Returning a true value if it is a close match among different columns in r
This looks at 1.05 times the minimum values is less than the 0.95 times the maximum value for each of the rows. (I assumed that's what you meant by within %5 of each other.)
sapply(1:nrow(df1), function(i) (min(df1[i, 2:4]) * 1.05) >
(0.95 * max(df1[i, 2:4])))
# [1] TRUE FALSE FALSE FALSE FALSE
Slightly different way to do the same.
sapply(1:nrow(df1), function(i) diff(range(df1[i, 2:4]) *
c(1.05, 0.95)) <= 0)
# [1] TRUE FALSE FALSE FALSE FALSE
Does this work:
library(dplyr)
library(data.table)
df1 %>% rowwise() %>% mutate(new_col = case_when(between(d, 0.95*b, 1.05*b) & between(e, 0.95*d, 1.05*d) ~ 'TRUE', TRUE ~ 'FALSE'))
# A tibble: 5 x 5
# Rowwise:
a b d e new_col
<chr> <dbl> <dbl> <dbl> <chr>
1 id1 5 5.2 5.4 TRUE
2 id2 10 150 0 FALSE
3 id3 7 123 10 FALSE
4 id4 2 5 3 FALSE
5 id5 3 7 5 FALSE
Is this what you're after?
a <- c('id1','id2','id3','id4','id5')
b <- c(5,10,7,2,3)
d <- c(5.2,150,123,5,7)
e <- c(5.4,0,10,3,5)
df1 <- data.frame(a,b,d,e)
library(tidyverse)
df1 %>%
mutate(new_col = ifelse((b >= (0.95 * d) & b <= (1.05 * d) & d >= (0.95 * e) & d <= (1.05 * e)),
"TRUE", "FALSE"))
a b d e new_col
1 id1 5 5.2 5.4 TRUE
2 id2 10 150.0 0.0 FALSE
3 id3 7 123.0 10.0 FALSE
4 id4 2 5.0 3.0 FALSE
5 id5 3 7.0 5.0 FALSE