Roll an N sided die K times. Let S be the side that appeared most often. What is the expected number of times S appeared?
Not an answer, but it's worth trying some example with small $N$.
Let $M$ be your number.
For $n=2$, and any $k/2 < m \leq k$ you have $P(M=m)=\frac{\binom{k}{m}}{2^{k-1}}$. If $k$ even, then $P(M=k/2)=\frac{\binom{k}{k/2}}{2^k}$.
So, for $k=2j+1$ odd, you have:
$$\begin{align}E(M)&=\frac{1}{2^{2j}}\sum_{m=j+1}^{2j+1} m\binom{2j+1}{m}\\ &=\frac{2j+1}{2^{2j}}\sum_{m=j+1}^{2j+1}\binom{2j}{m-1}\\ &=\frac{2j+1}{2^{2j}}\sum_{m=j}^{2j}\binom{2j}{m}\\ &=\frac{2j+1}{2^{2j}}\left(\frac{1}{2}2^{2j}+\frac{1}{2}\binom{2j}{j}\right)\\ &=\frac{k}{2}\left(1+\frac{\binom{k-1}{(k-1)/2}}{2^{k-1}}\right) \end{align}$$
For $N=2$ and $k=2j$, you get: $$ \begin{align}E(M)&=j\frac{\binom{2j}{j}}{2^{2j}}+\frac{1}{2^{2j-1}}\sum_{m=j+1}^{2j}m\binom{2j}{m}\\ &=j\frac{\binom{2j}{j}}{2^{2j}}+\frac{2j}{2^{2j-1}}\sum_{m=j+1}^{2j}\binom{2j-1}{m-1}\\ &=j\frac{\binom{2j}{j}}{2^{2j}}+\frac{j}{2^{2j-2}}\cdot\frac{2^{2j-1}}{2}\\ &=\frac{k}{2}\left(1+\frac{\binom{k}{k/2}}{2^k}\right) \end{align}$$
It's gonna get messier when trying it for $N=3$.
Here is a closed form, we will need more sophisticated methods for the asymptotics.
Following the notation introduced at this MSE link we suppose that the die has $m$ faces and is rolled $n$ times. Rolling the die with the most occured value being $q$ and instances of this size being marked yields the species
$$\mathfrak{S}_{=m} (\mathfrak{P}_{=0}(\mathcal{Z}) + \mathfrak{P}_{=1}(\mathcal{Z}) + \cdots + \mathcal{V}\mathfrak{P}_{=q}(\mathcal{Z})).$$
This has generating function
$$G(z,v) = \left(\sum_{r=0}^{q-1} \frac{z^r}{r!} + v\frac{z^q}{q!}\right)^m.$$
Subtracting the values where sets of size $q$ did not occur we obtain the generating function
$$H_{q}(z) = \left(\sum_{r=0}^{q} \frac{z^r}{r!}\right)^m - \left(\sum_{r=0}^{q-1} \frac{z^r}{r!}\right)^m.$$
This also follows more or less by inspection.
We then obtain for the desired quantity the closed form
$$\bbox[5px,border:2px solid #00A000]{ \frac{n!}{m^n} [z^n] \sum_{q=1}^n q H_q(z).}$$
Introducing
$$L_{q}(z) = \left(\sum_{r=0}^{q} \frac{z^r}{r!}\right)^m$$
we thus have
$$\frac{n!}{m^n} [z^n] \sum_{q=1}^n q (L_{q}(z) - L_{q-1}(z)).$$
This is
$$\frac{n!}{m^n} [z^n] \left(n L_n(z) - \sum_{q=0}^{n-1} L_q(z)\right).$$
We also have for
$$[z^n] L_q(z) = \sum_{k=0}^{\min(q, n)} \frac{1}{k!} [z^{n-k}] \left(\sum_{r=0}^{q} \frac{z^r}{r!}\right)^{m-1}$$
Furthermore we obtain for $m=1$
$$[z^n] L_q(z) = [[n \le q]] \times \frac{1}{n!}.$$
With these we can implement a recursion, which in fact on being coded proved inferior to Maple's fast polynomial multiplication routines. It is included here because it memoizes coefficients of $L_q(z)$, thereby providing a dramatic speed-up of the plots at the cost of allocating more memory.
All of this yields the following graph where we have scaled the plot by a factor of $n/m.$ This is it for a six-sided die:
3+ H + | H + H | + H + HH | HH 2+ HH | HHH + HHHH + HHHHHHH | HHHHHHHHHHH + HHHHHHHHHHHHHHHHHHHHHHHHH | HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH -+--+---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-- 0 20 40 60 80 100 120
And here is the plot for a twelve-sided die. (I consider it worth observing that we have the exact value for the expectation in the case of $120$ rolls of this die, a case count that has $130$ digits, similar to what appeared in the companion post.)
8+ | + + | + + H | 6+ | + + | H + + H | 4+ HH + H | H + HH + HH | HHHH + HHHHHH 2+ HHHHHHHHHHH | HHHHHHHHHHHHHHHHHHHHHHHHH + HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH -+--+---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-- 0 20 40 60 80 100 120
This was the Maple code.
with(plots); with(combinat); ENUM := proc(n, m) option remember; local rolls, res, ind, counts, least, most; res := 0; for ind from m^n to 2*m^n-1 do rolls := convert(ind, base, m); counts := map(mel->op(2, mel), convert(rolls[1..n], `multiset`)); res := res + max(counts); od; res/m^n; end; L := (m, rmax) -> add(z^r/r!, r=0..rmax)^m; X := proc(n, m) option remember; local H; H := q -> expand(L(m,q)-L(m,q-1)); n!/m^n* coeff(add(q*H(q), q=1..n), z, n); end; LCF := proc(n,m,q) option remember; if n < 0 then return 0 fi; if m = 1 then if n <= q then return 1/n! fi; return 0; fi; add(1/k!*LCF(n-k,m-1,q),k=0..min(q,n)); end; LVERIF := (m, q) -> add(LCF(n, m, q)*z^n, n=0..q*m); XX := proc(n, m) option remember; local res; res := n*LCF(n,m,n) - add(LCF(n,m,q), q=0..n-1); res*n!/m^n; end; DICEPLOT := proc(nmx, m) local pts; pts := [seq([n, XX(n,m)/(n/m)], n=1..nmx)]; pointplot(pts); end;