Rotate An Integer Array with an O(n) algorithm
C (104)
void reverse(int* a, int* b)
{
while (--b > a) {
*b ^= *a;
*a ^= *b;
*b ^= *a;
++a;
}
}
void rotate(int *arr, int s_arr, int by)
{
reverse(arr, arr+s_arr);
reverse(arr, arr+by);
reverse(arr+by, arr+s_arr);
}
Minified:
v(int*a,int*b){while(--b>a){*b^=*a;*a^=*b;*b^=*a++;}}r(int*a,int s,int y){v(a,a+s);v(a,a+y);v(a+y,a+s);}
APL (4)
¯A⌽B
- A is the number of places to rotate
- B is the name of the array to be rotated
I'm not sure if APL actually required it, but in the implementation I've seen (the internals of) this would take time proportional to A
, and constant memory.
Here is a long winded C version of Colin's idea.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int gcd(int a, int b) {
int t;
if (a < b) {
t = b; b = a; a = t;
}
while (b != 0) {
t = a%b;
a = b;
b = t;
}
return a;
}
double arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
int s_arr = sizeof(arr)/sizeof(double);
/* We assume 1 <= by < s_arr */
void rotate(double *arr, int s_arr, int by) {
int i, j, f;
int g = gcd(s_arr,by);
int n = s_arr/g;
double t_in, t_out;
for (i=0; i<g; i++) {
f = i;
t_in = arr[f + s_arr - by];
for (j=0; j<n; j++) {
t_out = arr[f];
arr[f] = t_in;
f = (f + by) % s_arr;
t_in = t_out;
}
}
}
void print_arr(double *arr, int s_arr) {
int i;
for (i=0; i<s_arr; i++) printf("%g ",arr[i]);
puts("");
}
int main() {
double *temp_arr = malloc(sizeof(arr));
int i;
for (i=1; i<s_arr; i++) {
memcpy(temp_arr, arr, sizeof(arr));
rotate(temp_arr, s_arr, i);
print_arr(temp_arr, s_arr);
}
}