Rotate an object in image about its centroid

Those damn coordinate systems! :)

You can see a small part of the object at the lower left corner of your result image. That's because you forgot to add the center vector after the rotation to translate it to the right position:

i = ImageForwardTransformation[img, center + RotationMatrix[Pi/2].(# - center) &, 
                               DataRange -> Full]

or better still:

i = ImageForwardTransformation[img, RotationTransform[Pi/2, center], DataRange -> Full]

Mathematica graphics

ColorCombine[{img, i}]

Mathematica graphics


As a simple application, let's rotate the center component (only) in the following image:

img = Binarize@Import@"http://i.stack.imgur.com/4SYJS.png"

Mathematica graphics

cms = ComponentMeasurements[img, {"Centroid", "Mask"}];
centerComp = SortBy[cms, Norm[ImageDimensions@img /2 - #[[2, 1]]] &][[1, 1]];
{center, mask} = (centerComp /. cms);
ir = ImageForwardTransformation[Image[mask], RotationTransform[Pi/2, center], 
                                DataRange -> Full];
ImageAdd[ImageMultiply[img, ColorNegate@Image@mask], ir]

Mathematica graphics


As the @Dr. belisarius edited his answer just now,I wanna post a method to solve it about his second case.

First,Use the Image-Tools to select one or more components to transform

enter image description here

Then Copy as Marker Image.We get enter image description here

Hightligt the components we selected

img = Binarize@Import@"http://i.stack.imgur.com/4SYJS.png";
part = GeodesicDilation[Image[#], img] & /@ 
   Values[ComponentMeasurements[imgtoolmask, "Mask"]];
HighlightImage[img, ImageAdd[part]]

enter image description here

Then rotate it.

partrote = 
  ImageForwardTransformation[#, 
     RotationTransform[Pi/2, 
      1 /. ComponentMeasurements[#, "Centroid"]], 
     DataRange -> Full] & /@ part;
ImageAdd[ImageSubtract[img, Sequence @@ part], Sequence @@ partrote]

enter image description here