Sample each group after pandas groupby
pandas >= 1.1: GroupBy.sample
This works like magic:
# np.random.seed(0)
df.groupby('b').sample(frac=.3)
a b
5 6 0
0 1 1
pandas <= 1.0.X
You can use GroupBy.apply
with sample
. You do not need to use a lambda; apply
accepts keyword arguments:
df.groupby('b', group_keys=False).apply(pd.DataFrame.sample, frac=.3)
a b
5 6 0
0 1 1
Apply a lambda and call sample
with param frac
:
In [2]:
df = pd.DataFrame({'a': [1,2,3,4,5,6,7],
'b': [1,1,1,0,0,0,0]})
grouped = df.groupby('b')
grouped.apply(lambda x: x.sample(frac=0.3))
Out[2]:
a b
b
0 6 7 0
1 2 3 1