Set NA to 0 in R
To add to James's example, it seems you always have to create an intermediate when performing calculations on NA-containing data frames.
For instance, adding two columns (A and B) together from a data frame dfr
:
temp.df <- data.frame(dfr) # copy the original
temp.df[is.na(temp.df)] <- 0
dfr$C <- temp.df$A + temp.df$B # or any other calculation
remove('temp.df')
When I do this I throw away the intermediate afterwards with remove
/rm
.
You can use replace_na()
from tidyr
package
df %>% replace_na(list(column1 = 0, column2 = 0)
You can just use the output of is.na
to replace directly with subsetting:
bothbeams.data[is.na(bothbeams.data)] <- 0
Or with a reproducible example:
dfr <- data.frame(x=c(1:3,NA),y=c(NA,4:6))
dfr[is.na(dfr)] <- 0
dfr
x y
1 1 0
2 2 4
3 3 5
4 0 6
However, be careful using this method on a data frame containing factors that also have missing values:
> d <- data.frame(x = c(NA,2,3),y = c("a",NA,"c"))
> d[is.na(d)] <- 0
Warning message:
In `[<-.factor`(`*tmp*`, thisvar, value = 0) :
invalid factor level, NA generated
It "works":
> d
x y
1 0 a
2 2 <NA>
3 3 c
...but you likely will want to specifically alter only the numeric columns in this case, rather than the whole data frame. See, eg, the answer below using dplyr::mutate_if
.
A solution using mutate_all
from dplyr
in case you want to add that to your dplyr
pipeline:
library(dplyr)
df %>%
mutate_all(funs(ifelse(is.na(.), 0, .)))
Result:
A B C
1 0 0 0
2 1 0 0
3 2 0 2
4 3 0 5
5 0 0 2
6 0 0 1
7 1 0 1
8 2 0 5
9 3 0 2
10 0 0 4
11 0 0 3
12 1 0 5
13 2 0 5
14 3 0 0
15 0 0 1
If in any case you only want to replace the NA's in numeric columns, which I assume it might be the case in modeling, you can use mutate_if
:
library(dplyr)
df %>%
mutate_if(is.numeric, funs(ifelse(is.na(.), 0, .)))
or in base R:
replace(is.na(df), 0)
Result:
A B C
1 0 0 0
2 1 <NA> 0
3 2 0 2
4 3 <NA> 5
5 0 0 2
6 0 <NA> 1
7 1 0 1
8 2 <NA> 5
9 3 0 2
10 0 <NA> 4
11 0 0 3
12 1 <NA> 5
13 2 0 5
14 3 <NA> 0
15 0 0 1
Update
with dplyr 1.0.0
, across
is introduced:
library(dplyr)
# Replace `NA` for all columns
df %>%
mutate(across(everything(), ~ ifelse(is.na(.), 0, .)))
# Replace `NA` for numeric columns
df %>%
mutate(across(where(is.numeric), ~ ifelse(is.na(.), 0, .)))
Data:
set.seed(123)
df <- data.frame(A=rep(c(0:3, NA), 3),
B=rep(c("0", NA), length.out = 15),
C=sample(c(0:5, NA), 15, replace = TRUE))