Showing $\pi\int_{0}^{\infty}[1+\cosh(x\pi)]^{-n}dx={(2n-2)!!\over (2n-1)!!}\cdot{2\over 2^n}$
First: remove the useless constant by setting $x=\frac{z}{\pi}$. Then, through $z=\log u$ and $v=\frac{1}{u}$:
$$ \int_{0}^{+\infty}(1+\cosh(z))^{-n}\,dz = 2^n\int_{1}^{+\infty}\frac{\left(2+u+\frac{1}{u}\right)^{-n}}{u}\,du=2^n\int_{0}^{1}\frac{\left(2+v+\frac{1}{v}\right)^{-n}}{v}\,dv$$ so the LHS equals: $$ 2^{n-1}\int_{0}^{+\infty}\frac{u^{n-1} du}{(u+1)^{2n}}\,du = 2^n\int_{0}^{+\infty}\frac{t^{2n-1}\,dt}{(1+t^2)^{2n}}= 2^{n-1} B(n,n) = 2^{n-1}\frac{\Gamma(n)^2}{\Gamma(2n)}.$$
As an alternative, just apply IBP multiple times.
It leads to a recursion similar to the one for $\int_{0}^{\pi/2}\sin^{2n}(\theta)\,d\theta.$
Take $u=\tanh\left(x\right) $, then $\cosh\left(x\right)=\frac{1+u^{2}}{1-u^{2}} $ and $dx=\frac{2du}{1-u^{2}} $ so $$\int_{0}^{\infty}\frac{1}{\left(\cosh\left(x\right)+1\right)^{n}}dx=\int_{0}^{1}\frac{2}{\left(1-u^{2}\right)\left(\frac{1+u^{2}}{1-u^{2}}+1\right)^{n}}du $$ $$=\frac{1}{2^{n-1}}\int_{0}^{1}\left(1-u^{2}\right)^{n-1}du=\frac{1}{2^{n}}\int_{0}^{1}\left(1-v\right)^{n-1}v^{-1/2}dv=\frac{B\left(1/2,n\right)}{2^{n}}$$ $$=\frac{1}{2^{n}}\frac{\sqrt{\pi}\left(n-1\right)!}{\Gamma\left(n+1/2\right)}.$$