Showing the inequality $|\alpha + \beta|^p \leq 2^{p-1}(|\alpha|^p + |\beta|^p)$

  • The map $x\mapsto x^p$ for $x\geq 0$ is convex, since its second derivative is $p(p-1)x^{p-2}\geq 0$.
  • We have $$\left|\frac{a+b}2\right|^p\leq \left(\frac{|a|+|b|}2\right)^p\leq \frac{|a|^p+|b|^p}2.$$

Without loss of generality, we can assume that that $\lvert \alpha \rvert \geq \lvert \beta \rvert$. Now essentially you want to prove that $$\displaystyle \left \lVert \frac{z + 1}{2} \right \Vert^p \leq \displaystyle \frac{\lVert z \rVert^p + 1}{2},$$ where $\displaystyle z = \frac{\alpha}{\beta}$ and $\lVert z \rVert \geq 1$.

Note that $$ \displaystyle \left \lVert \frac{z + 1}{2} \right \Vert \leq \frac{\lVert z \rVert + 1}{2}$$

So if we prove that $\displaystyle \left(\frac{1+t}{2} \right)^p \leq \frac{1+t^p}{2}$, where $t = \lVert z \rVert \geq 1$, we are done.

Now this is a one-variable calculus problem. Consider $f(t) = \displaystyle \frac{1+t^p}{2} - \left(\frac{1+t}{2} \right)^p$. We then get that $$\displaystyle f'(t) = \frac{p t^{p-1}}{2} - \frac{p (1+t)^{p-1}}{2^p}.$$ Hence, $$f'(t) = \frac{p}{2} \left( t^{p-1} - \left(\frac{1+t}{2} \right)^{p-1}\right) \geq 0$$ for $t \geq 1$. Hence, $f(t)$ is increasing for all $t \geq 1$. And $f(1) = 0$. Hence, we have that $$f(t) \geq f(1) = 0.$$ Hence, we get that $$\displaystyle \left(\frac{1+t}{2} \right)^p \leq \frac{1+t^p}{2},$$ where $t = \lVert z \rVert \geq 1$


In fact, one advantage of the argument in john w.'s answer is that it can be extended further to prove $$(a+b)^n\leq p^na^n+q^nb^n,$$ where $\frac{1}{p}+\frac{1}{q}=1$. In particular, one can choose the coefficient of $a^n$ very close to $1$ by paying the price of a larger coefficient of $b^n$.

The proof is achieved by arguing either $(a+b)\leq pa$ or $(a+b)\leq qb$ holds. This is true since otherwise one would get a contradiction that $\left(\frac{1}{p}+\frac{1}{q}\right)(a+b)>a+b$.