Simplification of prefix notation
update: even though it's far away from perfect, the improved version of the code under [2] passes all tests on Kattis. See my concerns below.
There are several issues with your original code [1]:
For the input
+ / 1 2 1
your code yields:1
instead of1.5
.The reason is your usage of
parseInt
on stack values which has the effect that floats are converted to an integer by ignoring the fractional part of said number.Examples:
parseInt(1/2) === 0
parseInt(2/3) === 0
Solution: replace all occurrences of
parseInt
withNumber
For the input
1
your code yields:instead of
1
The reason for this is that the
stack
is only appended toresult
if the code is processing a variable or an operatorSolution: do
result.unshift(...stack)
after thefor
-loop.
Find the improved version of the code under [2]. This version passes all Kattis tests.
BUT: I can not guarantee that there are no other bugs. Solving the puzzle the way you started it, feels so unnatural and unnecessarily complicated. For this reason I would suggest abandoning this approach entirely. The problem with the chosen solution is that it tries to simplify the expression while parsing it from right to left. The whole point behind the prefix notation is that you can simplify expressions easily while parsing from left to right by always reading and processing one symbol at the time. You will find a much simpler solution to the problem if you do that. The key idea here is that you need a function readNextSymbol
which reads a symbol and either:
- (recursive step) if it the symbol is an operator: calls the operator functions which uses
readNextSymbol
to fetch its arguments. - (base case) if the symbol is a variable or constant: casts and returns the symbol.
[1] original code
const readline = require('readline');
const rl = readline.createInterface({
input: process.stdin,
output: process.stdout
});
const operators = ['+', '-', '*', '/'];
const operatorsFunctions = {
'+': (a, b) => a + b,
'-': (a, b) => a - b,
'*': (a, b) => a * b,
'/': (a, b) => a / b,
};
let lineNumber = 0;
rl.on('line', (line) => {
const mathExpression = line.split(' ');
lineNumber += 1;
let result = [];
let stack = [];
for (let i = mathExpression.length -1; i >= 0; i--) {
if (!isNaN(mathExpression[i])) {
stack.unshift(mathExpression[i]);
} else if (operators.includes(mathExpression[i])){
if (!stack.length) {
result.unshift(mathExpression[i]);
}
if (stack.length === 1) {
result.unshift(stack[0]);
result.unshift(mathExpression[i]);
stack = [];
}
if (stack.length > 1) {
const sum = operatorsFunctions[mathExpression[i]](parseInt(stack[0]), parseInt(stack[1]))
stack.splice(0, 2, sum);
if (i === 0) {
result.unshift(...stack);
}
}
} else {
if (stack.length) {
result.unshift(...stack);
stack = [];
}
result.unshift(mathExpression[i]);
}
}
const text = `Case ${lineNumber}: ${result.join(' ')}`;
console.log(text);
});
[2] working code
const readline = require('readline');
const rl = readline.createInterface({
input: process.stdin,
output: process.stdout
});
const operators = ['+', '-', '*', '/'];
const operatorsFunctions = {
'+': (a, b) => a + b,
'-': (a, b) => a - b,
'*': (a, b) => a * b,
'/': (a, b) => a / b,
};
function parse(line) {
const mathExpression = line.split(' ');
let result = [];
let stack = [];
for (let i = mathExpression.length -1; i >= 0; i--) {
if (!isNaN(mathExpression[i])) {
stack.unshift(mathExpression[i]);
} else if (operators.includes(mathExpression[i])){
if (!stack.length) {
result.unshift(mathExpression[i]);
}
if (stack.length === 1) {
result.unshift(stack[0]);
result.unshift(mathExpression[i]);
stack = [];
}
if (stack.length > 1) {
const sum = operatorsFunctions[mathExpression[i]](
Number(stack[0]),
Number(stack[1])
)
stack.splice(0, 2, sum);
}
} else {
if (stack.length) {
result.unshift(...stack);
stack = [];
}
result.unshift(mathExpression[i]);
}
}
result.unshift(...stack);
return result.join(' ');
}
let lineNumber = 0;
rl.on('line', (line) => {
lineNumber += 1;
let answer = parse(line);
console.log(`Case ${lineNumber}: ${answer}`);
});
I personally echo the sentiment in Ente's answer after reviewing the code provided in the question:
I would suggest abandoning this approach entirely.
After careful consideration of feedback in the comments below, I've boiled down my object-oriented approach to a conventional class
style, and a more functional closure style.
The two styles share:
a common interface,
interface Expression { isConstant(void): boolean; toString(void): string; simplify(void): Expression; }
two types
Binary
andNullary
, which implement the interfaceExpression
and represent expressions of arity two or zero respectively,a
Map
of operators to binary functions,const operators = new Map([ ['+', (a, b) => a + b], ['-', (a, b) => a - b], ['*', (a, b) => a * b], ['/', (a, b) => a / b] ]);
and a static method.
function parse (tokens) { const token = tokens.shift(); if (!operators.has(token)) { return new Nullary(token); } const a = parse(tokens); const b = parse(tokens); return new Binary(token, a, b); }
The class style uses runtime polymorphism and defines the classes Binary
and Nullary
:
class Binary {
constructor (op, a, b) {
this.op = op;
this.operands = [a, b];
this.f = operators.get(op);
}
isConstant () {
return this.operands.every(e => e.isConstant());
}
toString () {
return `${this.op} ${this.operands.join(' ')}`;
}
simplify () {
const args = this.operands.map(e => e.simplify());
return args.every(e => e.isConstant())
? new Nullary(`${this.f(...args.map(Number))}`)
: new Binary(this.op, ...args);
}
}
class Nullary {
constructor (value) {
this.value = value;
}
isConstant () { return !isNaN(this.value); }
toString () { return this.value; }
simplify () { return this; }
}
The closure style defines two functions Binary()
and Nullary()
, each of which returns an object that implements the Expression
interface:
function Binary (op, a, b) {
const operands = [a, b];
const f = operators.get(op);
return {
isConstant: () => operands.every(e => e.isConstant()),
toString: () => `${op} ${operands.join(' ')}`,
simplify: () => {
const args = operands.map(e => e.simplify());
return args.every(e => e.isConstant())
? Nullary(`${f(...args.map(Number))}`)
: Binary(op, ...args)
}
};
}
function Nullary (value) {
const self = {
isConstant: () => !isNaN(value),
toString: () => value,
simplify: () => self
};
return self;
}
Note that the new
operator used in parse()
is not necessary for calling the static functions defined in the closure style above.
Finally, both of these read input and write output with the same boilerplate to call parse()
and expression.simplify()
:
const readline = require('readline');
const rl = readline.createInterface({
input: process.stdin,
output: process.stdout
});
let lineNo = 0;
rl.on('line', line => {
const tokens = line.split(/\s+/g);
const expression = parse(tokens);
console.log(`Case ${++lineNo}: ${expression.simplify()}`);
});
Thanks Bergi for your feedback, which inspired me to write a closure-based approach.