Simplified dput() in R

We could set control to NULL to simplify:

dput(Df, control = NULL)
# list(A = c(2, 2, 2, 6, 7, 8), B = c(NA, NA, NA, NA, 7, 9), C = c(1, 3, 5, NA, NA, NA))

Then wrap it with data.frame:

data.frame(dput(Df, control = NULL))

Edit: To avoid factor columns getting converted to numbers, we could convert them to character before calling dput:

dput_small <- function(d){
  ix <- sapply(d, is.factor)
  d[ix] <- lapply(d[ix], as.character)
  dput(d, control = NULL)
  }

Edit: leaving the older solution at the bottom because it got a bounty and many votes but proposing an improved answer

You can use the {constructive} package, now only on GitHub but might be on CRAN by the time you read this :

# remotes::install_github("cynkra/constructive")
Df <- data.frame(A = c(2, 2, 2, 6, 7, 8),
                 B = c("A", "G", "N", NA, "L", "L"),
                 C = c(1L, 3L, 5L, NA, NA, NA))

constructive::construct(Df)
#> data.frame(
#>   A = c(2, 2, 2, 6, 7, 8),
#>   B = c("A", "G", "N", NA, "L", "L"),
#>   C = c(1L, 3L, 5L, NA, NA, NA)
#> )

It has custom constructors to many common classes so it should be able to reproduce most objects faithfully in a human readable way.


Old solution:

3 solutions :

  • a wrapper around dput (handles standard data.frames, tibbles and lists)

  • a read.table solution (for data.frames)

  • a tibble::tribble solution (for data.frames, returning a tibble)

All include n and random parameter which allow one to dput only the head of the data or sample it on the fly.

dput_small1(Df)
# Df <- data.frame(
#   A = c(2, 2, 2, 6, 7, 8),
#   B = structure(c(1L, 2L, 4L, NA, 3L, 3L), .Label = c("A", "G", "L", 
#     "N"), class = "factor"),
#   C = c(1L, 3L, 5L, NA, NA, NA) ,
#   stringsAsFactors=FALSE)

dput_small2(Df,stringsAsFactors=TRUE)
# Df <- read.table(sep="\t", text="
#   A   B   C
#   2   A    1
#   2   G    3
#   2   N    5
#   6   NA  NA
#   7   L   NA
#   8   L   NA", header=TRUE, stringsAsFactors=TRUE)

dput_small3(Df)
# Df <- tibble::tribble(
#   ~A, ~B, ~C,
#   2,           "A",          1L,
#   2,           "G",          3L,
#   2,           "N",          5L,
#   6, NA_character_, NA_integer_,
#   7,           "L", NA_integer_,
#   8,           "L", NA_integer_
# )
# Df$B <- factor(Df$B)

Wrapper around dput

This option that gives an output very close to the one proposed in the question. It's quite general because it's actually wrapped around dput, but applied separately on columns.

multiline means 'keep dput's default output laid out into multiple lines'.

dput_small1<- function(x,
                       name=as.character(substitute(x)),
                       multiline = TRUE,
                       n=if ('list' %in% class(x)) length(x) else nrow(x),
                       random=FALSE,
                       seed = 1){
  name
  if('tbl_df' %in% class(x)) create_fun <- "tibble::tibble" else
    if('list' %in% class(x)) create_fun <- "list" else
      if('data.table' %in% class(x)) create_fun <- "data.table::data.table" else
        create_fun <- "data.frame"
    
    if(random) {
      set.seed(seed)
      if(create_fun == "list") x <- x[sample(1:length(x),n)] else 
        x <- x[sample(1:nrow(x),n),]
    } else {
      x <- head(x,n)
    }
    
    line_sep <- if (multiline) "\n    " else ""
    cat(sep='',name," <- ",create_fun,"(\n  ",
        paste0(unlist(
          Map(function(item,nm) paste0(nm,if(nm=="") "" else " = ",paste(capture.output(dput(item)),collapse=line_sep)),
              x,if(is.null(names(x))) rep("",length(x)) else names(x))),
          collapse=",\n  "),
        if(create_fun == "data.frame") ",\n  stringsAsFactors = FALSE)" else "\n)")
}

dput_small1(list(1,2,c=3,d=4),"my_list",random=TRUE,n=3)
# my_list <- list(
#   2,
#   d = 4,
#   c = 3
# )

read.table solution

For data.frames I find it comfortable however to have the input in a more explicit/tabular format.

This can be reached using read.table, then reformatting automatically the type of columns that read.table wouldn't get right. Not as general as first solution but will work smoothly for 95% of the cases found on SO.

dput_small2 <- function(df,
                        name=as.character(substitute(df)),
                        sep='\t',
                        header=TRUE,
                        stringsAsFactors = FALSE,
                        n= nrow(df),
                        random=FALSE,
                        seed = 1){
    name
    if(random) {
      set.seed(seed)
      df <- df[sample(1:nrow(df),n),]
    } else {
      df <- head(df,n)
    }
  cat(sep='',name,' <- read.table(sep="',sub('\t','\\\\t',sep),'", text="\n  ',
      paste(colnames(df),collapse=sep))
  df <- head(df,n)
  apply(df,1,function(x) cat(sep='','\n  ',paste(x,collapse=sep)))
  cat(sep='','", header=',header,', stringsAsFactors=',stringsAsFactors,')')
  
  sapply(names(df), function(x){
    if(is.character(df[[x]]) & suppressWarnings(identical(as.character(as.numeric(df[[x]])),df[[x]]))){ # if it's a character column containing numbers
      cat(sep='','\n',name,'$',x,' <- as.character(', name,'$',x,')')
    } else if(is.factor(df[[x]]) & !stringsAsFactors) { # if it's a factor and conversion is not automated
      cat(sep='','\n',name,'$',x,' <- factor(', name,'$',x,')')
    } else if(inherits(df[[x]], "POSIXct")){
      cat(sep='','\n',name,'$',x,' <- as.POSIXct(', name,'$',x,')')
    } else if(inherits(df[[x]], "Date")){
      cat(sep='','\n',name,'$',x,' <- as.Date(', name,'$',x,')')
    }})
  invisible(NULL)
}

Simplest case

dput_small2(iris,n=6)

will print:

iris <- read.table(sep="\t", text="
  Sepal.Length  Sepal.Width Petal.Length    Petal.Width Species
  5.1   3.5 1.4 0.2  setosa
  4.9   3.0 1.4 0.2  setosa
  4.7   3.2 1.3 0.2  setosa
  4.6   3.1 1.5 0.2  setosa
  5.0   3.6 1.4 0.2  setosa
  5.4   3.9 1.7 0.4  setosa", header=TRUE, stringsAsFactors=FALSE)

which in turn when executed will return :

#   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
# 1          5.1         3.5          1.4         0.2  setosa
# 2          4.9         3.0          1.4         0.2  setosa
# 3          4.7         3.2          1.3         0.2  setosa
# 4          4.6         3.1          1.5         0.2  setosa
# 5          5.0         3.6          1.4         0.2  setosa
# 6          5.4         3.9          1.7         0.4  setosa

str(iris)
# 'data.frame': 6 obs. of  5 variables:
# $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4
# $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9
# $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7
# $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4
# $ Species     : chr  " setosa" " setosa" " setosa" " setosa" ...

more complex

dummy data:

test <- data.frame(a=1:5,
                   b=as.character(6:10),
                   c=letters[1:5],
                   d=factor(letters[6:10]),
                   e=Sys.time()+(1:5),
                   stringsAsFactors = FALSE)

This:

dput_small2(test,'df2')

will print:

df2 <- read.table(sep="\t", text="
  a b   c   d   e
  1 6   a   f   2018-02-15 11:53:17
  2 7   b   g   2018-02-15 11:53:18
  3 8   c   h   2018-02-15 11:53:19
  4 9   d   i   2018-02-15 11:53:20
  5 10  e   j   2018-02-15 11:53:21", header=TRUE, stringsAsFactors=FALSE)
df2$b <- as.character(df2$b)
df2$d <- factor(df2$d)
df2$e <- as.POSIXct(df2$e)

which in turn when executed will return :

#   a  b c d                   e
# 1 1  6 a f 2018-02-15 11:53:17
# 2 2  7 b g 2018-02-15 11:53:18
# 3 3  8 c h 2018-02-15 11:53:19
# 4 4  9 d i 2018-02-15 11:53:20
# 5 5 10 e j 2018-02-15 11:53:21

str(df2)    
# 'data.frame': 5 obs. of  5 variables:
# $ a: int  1 2 3 4 5
# $ b: chr  "6" "7" "8" "9" ...
# $ c: chr  "a" "b" "c" "d" ...
# $ d: Factor w/ 5 levels "f","g","h","i",..: 1 2 3 4 5
# $ e: POSIXct, format: "2018-02-15 11:53:17" "2018-02-15 11:53:18" "2018-02-15 11:53:19" "2018-02-15 11:53:20" ...

all.equal(df2,test)
# [1] "Component “e”: Mean absolute difference: 0.4574251" # only some rounding error

tribble solution

The read.table option is very readable but not very general. with tribble pretty much any data type can be handled (though factors need adhoc fixing).

This solution isn't so useful for OP's example but is great for list columns (see example below). To make use of the output, library tibble is required.

Just as my first solution, it's a wrapper around dput, but instead of 'dputting' columns, i'm 'dputting' elements.

dput_small3 <- function(df,
                        name=as.character(substitute(df)),
                        n= nrow(df),
                        random=FALSE,
                        seed = 1){
  name
  if(random) {
    set.seed(seed)
    df <- df[sample(1:nrow(df),n),]
  } else {
    df <- head(df,n)
  }
  df1 <- lapply(df,function(col) if(is.factor(col)) as.character(col) else col)
  dputs   <- sapply(df1,function(col){
    col_dputs <- sapply(col,function(elt) paste(capture.output(dput(elt)),collapse=""))
    max_char <- max(nchar(unlist(col_dputs)))
    sapply(col_dputs,function(elt) paste(c(rep(" ",max_char-nchar(elt)),elt),collapse=""))
  })
  lines   <- paste(apply(dputs,1,paste,collapse=", "),collapse=",\n  ")
  output  <- paste0(name," <- tibble::tribble(\n  ",
                    paste0("~",names(df),collapse=", "),
                    ",\n  ",lines,"\n)")
  cat(output)
  sapply(names(df), function(x) if(is.factor(df[[x]])) cat(sep='','\n',name,'$',x,' <- factor(', name,'$',x,')'))
  invisible(NULL)
}

dput_small3(dplyr::starwars[c(1:3,11)],"sw",n=6,random=TRUE)
# sw <- tibble::tribble(
#   ~name, ~height, ~mass, ~films,
#   "Lando Calrissian", 177L,       79,                     c("Return of the Jedi", "The Empire Strikes Back"),
#      "Finis Valorum", 170L, NA_real_,                                                   "The Phantom Menace",
#       "Ki-Adi-Mundi", 198L,       82, c("Attack of the Clones", "The Phantom Menace", "Revenge of the Sith"),
#           "Grievous", 216L,      159,                                                  "Revenge of the Sith",
#     "Wedge Antilles", 170L,       77,       c("Return of the Jedi", "The Empire Strikes Back", "A New Hope"),
#         "Wat Tambor", 193L,       48,                                                 "Attack of the Clones"
# )

The package datapasta won't always work perfectly as it currently doesn't support all types, but it is clean and easy, i.e.,

# install.packages(c("datapasta"), dependencies = TRUE)    
datapasta::dpasta(Df)
#> data.frame(
#>            A = c(2, 2, 2, 6, 7, 8),
#>            C = c(1L, 3L, 5L, NA, NA, NA),
#>            B = as.factor(c("A", "G", "N", NA, "L", "L"))
#> )

Tags:

Formatting

R