sklearn imput na code example
Example 1: SimpleImputer
imr = Imputer(missing_values='NaN', strategy='median', axis=0)
imr = imr.fit(data[['age']])
data['age'] = imr.transform(data[['age']]).ravel()
Example 2: Multivariate feature imputation
# Multivariate feature imputation
import numpy as np
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
imp = IterativeImputer(max_iter=10, random_state=0)
imp.fit([[1, 2], [3, 6], [4, 8], [np.nan, 3], [7, np.nan]])
# IterativeImputer(random_state=0)
X_test = [[np.nan, 2], [6, np.nan], [np.nan, 6]]
# the model learns that the second feature is double the first
print(np.round(imp.transform(X_test)))
# [[ 1. 2.]
# [ 6. 12.]
# [ 3. 6.]]