Sklearn preprocessing - PolynomialFeatures - How to keep column names/headers of the output array / dataframe
Working example, all in one line (I assume "readability" is not the goal here):
target_feature_names = ['x'.join(['{}^{}'.format(pair[0],pair[1]) for pair in tuple if pair[1]!=0]) for tuple in [zip(input_df.columns,p) for p in poly.powers_]]
output_df = pd.DataFrame(output_nparray, columns = target_feature_names)
Update: as @OmerB pointed out, now you can use the
get_feature_names
method:
>> poly.get_feature_names(input_df.columns)
['1', 'a', 'b', 'c', 'a^2', 'a b', 'a c', 'b^2', 'b c', 'c^2']
scikit-learn 0.18 added a nifty get_feature_names()
method!
>> input_df.columns
Index(['a', 'b', 'c'], dtype='object')
>> poly.fit_transform(input_df)
array([[ 1., 1., 2., 3., 1., 2., 3., 4., 6., 9.],
[ 1., 1., 2., 3., 1., 2., 3., 4., 6., 9.],
[ 1., 1., 2., 3., 1., 2., 3., 4., 6., 9.]])
>> poly.get_feature_names(input_df.columns)
['1', 'a', 'b', 'c', 'a^2', 'a b', 'a c', 'b^2', 'b c', 'c^2']
Note you have to provide it with the columns names, since sklearn doesn't read it off from the DataFrame by itself.
This works:
def PolynomialFeatures_labeled(input_df,power):
'''Basically this is a cover for the sklearn preprocessing function.
The problem with that function is if you give it a labeled dataframe, it ouputs an unlabeled dataframe with potentially
a whole bunch of unlabeled columns.
Inputs:
input_df = Your labeled pandas dataframe (list of x's not raised to any power)
power = what order polynomial you want variables up to. (use the same power as you want entered into pp.PolynomialFeatures(power) directly)
Ouput:
Output: This function relies on the powers_ matrix which is one of the preprocessing function's outputs to create logical labels and
outputs a labeled pandas dataframe
'''
poly = pp.PolynomialFeatures(power)
output_nparray = poly.fit_transform(input_df)
powers_nparray = poly.powers_
input_feature_names = list(input_df.columns)
target_feature_names = ["Constant Term"]
for feature_distillation in powers_nparray[1:]:
intermediary_label = ""
final_label = ""
for i in range(len(input_feature_names)):
if feature_distillation[i] == 0:
continue
else:
variable = input_feature_names[i]
power = feature_distillation[i]
intermediary_label = "%s^%d" % (variable,power)
if final_label == "": #If the final label isn't yet specified
final_label = intermediary_label
else:
final_label = final_label + " x " + intermediary_label
target_feature_names.append(final_label)
output_df = pd.DataFrame(output_nparray, columns = target_feature_names)
return output_df
output_df = PolynomialFeatures_labeled(input_df,2)
output_df
Constant Term a^1 b^1 c^1 a^2 a^1 x b^1 a^1 x c^1 b^2 b^1 x c^1 c^2
0 1 1 2 3 1 2 3 4 6 9
1 1 1 2 3 1 2 3 4 6 9
2 1 1 2 3 1 2 3 4 6 9