smooth functions or continuous

A function being smooth is actually a stronger case than a function being continuous. For a function to be continuous, the epsilon delta definition of continuity simply needs to hold, so there are no breaks or holes in the function (in the 2-d case). For a function to be smooth, it has to have continuous derivatives up to a certain order, say k. We say that function is $C^{k}$ smooth. An example of a continuous but not smooth function is the absolute value, which is continuous everywhere but not differentiable everywhere.


A smooth function is differentiable. Usually infinitely many times.


A smooth function can refer to a function that is infinitely differentiable. More generally, it refers to a function having continuous derivatives of up to a certain order specified in the text. This is a much stronger condition than a continuous function which may not even be once differentiable.