Solve $\int \frac{e^{x}(2-x^2)}{(1-x)\sqrt{1-x^2}}\mathrm dx$
Hint
Observe that the exponent of $1-x$ is $-\dfrac32$
So, let us find $$\dfrac{d\left(e^x\dfrac{(1+x)^n}{\sqrt{1-x}}\right)}{dx}$$
Compare with the given expression to find the value of $n$
Hint:
$$\dfrac{1+1-x^2}{(1-x)^{3/2}(1+x)^{1/2}}=\dfrac1{...}+f(x)$$
where $f(x)=\dfrac{\sqrt{1+x}}{\sqrt{1-x}},$
$f'(x)=?$
Recall $\dfrac{d(e^xf(x))}{dx}=?$
$x=\cos2t,dx=?$
$$-I=\int\dfrac{e^{\cos2t}(1+\sin^22t)}{\sin^2t}=e^{\cos2t}\csc^2t-\dfrac{d(e^{\cos2t})}{dt}(-\cot t)$$
$$=\dfrac{d(e^{\cos2t}(-\cot t))}{dt}$$