Solve $\lfloor{\sin x}\rfloor+\lfloor{\cos x}\rfloor=2^{1-|\sin x|}$
You have $1 = 2^0 \le 2^{1-|\sin x|} \le 2^1 = 2$
$$\begin{array}{c|c|c} & \lfloor \sin x \rfloor & \lfloor \cos x \rfloor \\ \hline x = 0 & 0 & 1 \\ 0 < x < \dfrac{\pi}{2} & 0 & 0 \\ x = \dfrac{\pi}{2} & 1 & 0 \\ \dfrac{\pi}{2} < x \le \pi & 0 & -1 \\ \pi < x < \dfrac{3\pi}{2} & -1 & -1 \\ \dfrac{3\pi}{2} \le x < 2\pi & -1 & 0 \end{array}$$
So, the LHS intersects the possible range of the RHS at $x=0$ or $x=\dfrac{\pi}{2}$. So, we need only try those two values:
$$2^{1-|\sin 0|} = 2^1 = 2 \neq 1 \\ 2^{1-\left|\sin \tfrac{\pi}{2}\right|} = 2^0 = 1 = \left\lfloor \sin \dfrac{\pi}{2} \right\rfloor + \left\lfloor \cos \dfrac{\pi}{2}\right\rfloor$$
Thus, the solution is $x = \dfrac{\pi}{2}+2\pi n, n\in \mathbb{Z}$.