Solve summation expression

Consider the function $$f\left(x\right)=\left(\frac{2}{3}+x\right)^{n}. $$ By the binomial theorem we have $$f\left(x\right)=\sum_{k=0}^{n}\dbinom{n}{k}\left(\frac{2}{3}\right)^{n-k}x^{k} $$ so if we take the derivative and we multiply by $x$ we have $$xf'\left(x\right)=\sum_{k=0}^{n}k\dbinom{n}{k}\left(\frac{2}{3}\right)^{n-k}x^{k} $$ so $$\sum_{k=0}^{n}k\dbinom{n}{k}\left(\frac{2}{3}\right)^{n-k}x^{k}=nx\left(\frac{2}{3}+x\right)^{n-1} $$ now take $x=\frac{1}{3}$.


\begin{align*} \sum_{k=0}^n k \binom{n}{k}\left(\frac{2}{3}\right)^{n-k}\left(\frac{1}{3}\right)^k &=\sum_{k=0}^n k\frac{n!}{k!(n-k)!}\left(\frac{2}{3}\right)^{n-k}\left(\frac{1}{3}\right)^k\\ &=\sum_{k=0}^n \frac{n!}{(k-1)!(n-k)!}\left(\frac{2}{3}\right)^{n-k}\left(\frac{1}{3}\right)^k\\ &=\frac{n}{3}\sum_{k=0}^n \frac{(n-1)!}{(k-1)!((n-1)-(k-1))!}\left(\frac{2}{3}\right)^{(n-1)-(k-1)}\left(\frac{1}{3}\right)^{k-1}\\ &=\frac{n}{3}\sum_{k=0}^n \binom{n-1}{k-1}\left(\frac{2}{3}\right)^{(n-1)-(k-1)}\left(\frac{1}{3}\right)^{k-1}\\ &=\frac{n}{3}\left(\frac{2}{3}+\frac{1}{3}\right)^{n-1}\\ &=\frac{n}{3}. \end{align*} The second to last line is a result of the binomial theorem.


Edit: It was pointed out that I need to be careful when $k=0$. I also made a mistake in applying the binomial theorem. Here is a revised proof. Note that when $k=0$, the term of the sum is $0$, so it is the same as starting at $k=1$.

\begin{align*} \sum_{k=0}^n k \binom{n}{k}\left(\frac{2}{3}\right)^{n-k}\left(\frac{1}{3}\right)^k &= \sum_{k=1}^n k \binom{n}{k}\left(\frac{2}{3}\right)^{n-k}\left(\frac{1}{3}\right)^k\\ &= \sum_{k=1}^n k \binom{n}{k}\left(\frac{2}{3}\right)^{n-k}\left(\frac{1}{3}\right)^k\\ &=\sum_{k=1}^n k\frac{n!}{k!(n-k)!}\left(\frac{2}{3}\right)^{n-k}\left(\frac{1}{3}\right)^k\\ &=\sum_{k=1}^n \frac{n!}{(k-1)!(n-k)!}\left(\frac{2}{3}\right)^{n-k}\left(\frac{1}{3}\right)^k\\ &=\frac{n}{3}\sum_{k=1}^n \frac{(n-1)!}{(k-1)!((n-1)-(k-1))!}\left(\frac{2}{3}\right)^{(n-1)-(k-1)}\left(\frac{1}{3}\right)^{k-1}\\ &=\frac{n}{3}\sum_{k=1}^n \binom{n-1}{k-1}\left(\frac{2}{3}\right)^{(n-1)-(k-1)}\left(\frac{1}{3}\right)^{k-1}\\ &=\frac{n}{3}\sum_{k=0}^{n-1} \binom{n-1}{k}\left(\frac{2}{3}\right)^{(n-1)-k}\left(\frac{1}{3}\right)^{k}\\ &=\frac{n}{3}\left(\frac{2}{3}+\frac{1}{3}\right)^{n-1}\\ &=\frac{n}{3}. \end{align*}


Just some binomial coefficient massage and the binomial formula: $$ \sum_{k=0}^nk\binom nkx^{n-k}y^k =\sum_{k=1}^nn\binom{n-1}{k-1}x^{n-k}y^k =ny(x+y)^{n-1} $$ Now plug in $x=\frac23$ and $y=\frac13$.