Solve the system of linear inequalities with parameters

When you have a system of (double) inequalities like this $$ \left\{ \matrix{ a \le x \le b \hfill \cr c \le x \le d \hfill \cr} \right. $$ you may think that each one represents a segment on the $x$ axis, with the system standing for AND, i.e. $$ \eqalign{ & \left\{ \matrix{ x \in \left[ {a,b} \right] \hfill \cr x \in \left[ {c,d} \right] \hfill \cr} \right.\quad \Rightarrow \quad x \in \left( {\left[ {a,b} \right] \cap \left[ {c,d} \right]} \right)\quad \Rightarrow \cr & \Rightarrow \quad x \in \left[ {\max (a,c),\min \left( {b,d} \right)} \right] \cr} $$

Therefore in your case we can do some manipulation as follows $$ \eqalign{ & \left\{ \matrix{ 0 \le x + 2y + 3a - 3b \le 2 \hfill \cr 0 \le - 2x - 3y + 6b \le 1 \hfill \cr 0 \le x \le 1 \hfill \cr 0 \le y \le 2 \hfill \cr 0 \le a \le 1 \hfill \cr 0 \le b \le 1 \hfill \cr} \right. \Rightarrow \cr & \Rightarrow \left\{ \matrix{ 3\left( {b - a} \right) \le x + 2y \le 3\left( {b - a} \right) + 2 \hfill \cr 6b - 1 \le 2x + 3y \le 6b \hfill \cr 0 \le x \le 1 \hfill \cr 0 \le y \le 2 \hfill \cr 0 \le a \le 1 \hfill \cr 0 \le b \le 1 \hfill \cr} \right. \Rightarrow \cr & \Rightarrow \left\{ \matrix{ 0 \le a \le 1 \hfill \cr 0 \le b \le 1 \hfill \cr 0 \le y \le 2 \hfill \cr 3\left( {b - a} \right) \le x \le 3\left( {b - a} \right) + 2 - 2y \hfill \cr 3b - 1/2 - 3/2y \le x \le 6b - 3/2y \hfill \cr 0 \le x \le 1 \hfill \cr} \right. \Rightarrow \cr & \Rightarrow \left\{ \matrix{ 0 \le a \le 1 \hfill \cr 0 \le b \le 1 \hfill \cr 0 \le y \le 2 \hfill \cr m = \max \left( {3\left( {b - a} \right),3b - 1/2 - 3/2y,0} \right) \hfill \cr n = \min \left( {3\left( {b - a} \right) + 2 - 2y,\;6b - 3/2y,\;1} \right) \hfill \cr m \le x \le n \hfill \cr} \right. \cr} $$

where at the third step we chose to isolate the $x$, but of course we could have done that with $y$ in this case obtaining $$ \left\{ \matrix{ 0 \le a \le 1 \hfill \cr 0 \le b \le 1 \hfill \cr 0 \le x \le 1 \hfill \cr m = \max \left( {3/2\left( {b - a} \right) - x/2 2b - 1/3 - 2/3x 0} \right) \hfill \cr n = \min \left( {3/2\left( {b - a} \right) + 1 - x/2 \;2b - 2/3x \;2} \right) \hfill \cr m \le y \le n \hfill \cr} \right. $$

So, once fixed $a, \; b, \; y$ within the allowed range, we can finish to compute $x$ in the first case, or viceversa in the second version.

The system sketched in Geogebra gives

Diseq_Syst_1

note in reply to your comment

As you can see from the sketch, the solutions (when they exist) will in general define a 2D area.
Referring to the case depicted, once fixed $a$ and $b$, you can describe the area by having the $y$ to span the allowed range $[0,2]$ and consequently determine $x$ to be within two bounds, necessarily depending from $y$.
There is no possibility to express the bounds on $x$ and $y$ independently from each other.

example with $a=0.63 ,\; b=0.59$

$$ \begin{array}{l} \left\{ \begin{array}{l} a = 0.63 \\ b = 0.59 \\ 0 \le y \le 2 \\ m = \max \left( { - 0.12,1.27 - 3/2y,0} \right) \\ n = \min \left( {1.88 - 2y,\;3.54 - 3/2y,\;1} \right) \\ m \le x \le n \\ \end{array} \right.\;\; \Rightarrow \\ \Rightarrow \left\{ \begin{array}{l} 0 \le y \le 2 \\ \begin{array}{*{20}c} {1.27 - 3/2y \le x \le 1} \hfill & {\left| {\;0 \le y < 0.44} \right.} \hfill \\ {1.27 - 3/2y \le x \le 1.88 - 2y} \hfill & {\left| {\;0.44 \le y < 2.54/3} \right.} \hfill \\ {0 \le x \le 1.88 - 2y} \hfill & {\left| {\;2.54/3 \le y < 0.94} \right.} \hfill \\ {0 \le x \le 1.88 - 2y\; \to \;\emptyset } \hfill & {\left| {\;0.94 \le y \le 2} \right.} \hfill \\ \end{array} \\ \end{array} \right.\; \Rightarrow \\ \Rightarrow \left\{ {\begin{array}{*{20}c} {1.27 - 3/2y \le x \le 1} \hfill & {\left| {\;0.18 \le y < 0.44} \right.} \hfill \\ {1.27 - 3/2y \le x \le 1.88 - 2y} \hfill & {\left| {\;0.44 \le y < 2.54/3} \right.} \hfill \\ {0 \le x \le 1.88 - 2y} \hfill & {\left| {\;2.54/3 \le y < 0.94} \right.} \hfill \\ \end{array}} \right. \\ \end{array} $$

The second version instead gives the more simple result $$ \left\{ \matrix{ a = 0.63 \hfill \cr b = 0.59 \hfill \cr 0 \le x \le 1 \hfill \cr m = \max \left( { - 0.06 - x/2,1.18 - 1/3 - 2/3x,0} \right) = \hfill \cr = 1.18 - 1/3 - 2/3x \hfill \cr n = \min \left( {0.94 - x/2,\;1.18 - 2/3x,\;2} \right) = \hfill \cr = 0.94 - x/2 \hfill \cr m \le y \le n \hfill \cr} \right. $$

addendum

I do not catch properly your requirement, but in any case I will introduce a more geometric approach to the problem that might offer a different view of the solutions.

Each double inequality represent a stripe comprised between two parallel lines with constant separation. The two stripes overlap to define a parallelogram, which is just translated while maintaining its shape unaltered.

Diseq_Sist_3

The coordinates of the four vertices are $$ \begin{array}{c|cccc} {} & & {Vsi} & {Vss} & {Vii} & {Vis} \\ \hline x & & {9a + 3b - 8} & {9a + 3b - 6} & {9a + 3b - 2} & {9a + 3b} \\ y & & { - 6a + 5} & { - 6a + 4} & { - 6a + 1} & { - 6a} \\ \end{array} $$ Now, until the x of $Vsi$ is greater than $1$ the whole parallelogram $P$ will be out of the rectangle $R = [0,1] \times [0,2]$.
Same if the y of $Vsi$ is below zero. So to have solutions it shall be $$ \eqalign{ & \left\{ \matrix{ 0 \le b \le 2 \hfill \cr 0 \le a \le 1 \hfill \cr 9a + 3b - 8 \le 1 \hfill \cr 0 \le - 6a + 5 \hfill \cr} \right.\quad \Rightarrow \quad \left\{ \matrix{ 0 \le b \le 2 \hfill \cr 0 \le a \le 1 - b/3 \hfill \cr a \le 5/6 \hfill \cr} \right.\quad \Rightarrow \cr & \Rightarrow \quad \left\{ \matrix{ 0 \le b \le 1/2\; \wedge \;0 \le a \le 5/6 \hfill \cr 1/2 < b \le 2\; \wedge \;0 \le a \le 1 - b/3 \hfill \cr} \right. \cr} $$ Note that the above is a necessary condition yet not sufficient. That's because when the upper vertex is in the second quadrant we have still to impose that $P$ intersects $R$, which is as complicated as to use the previous min/max conditions.


Let us consider the system in the form of \begin{cases} 6b-1\le 2x+3y \le 6b\\ 3b-3a \le x+2y \le 2+3b-3a\\ x,y \in[0,1]\tag1 \end{cases} over the set of the possible pairs $(a,b)\in[0,1]^2.$

$$\color{blue}{\mathbf{Case\ 1.\quad a-b >\dfrac23.}}$$

The system $(1)$ does not have solutions.

$$\color{blue}{\mathbf{Case\,2.\quad 0\le a \le \min\left[\frac{2+3b}3,1\right].}}\tag2$$

$\color{blue}{\mathbf{Case\,2.1.\quad b\in \bigg[0,\dfrac16\bigg],\quad a\in\bigg[0,b\bigg].}}$

The first equation of the system in the form of \begin{cases} 0 \le 2x+3y \le 6b\\ 3b-3a\le x+2y \le 2+3b-3a\tag{3.1} \end{cases} over the first quadrant defines the triangle with the vertice $\quad (0,0),\quad (3b,0),\quad (0,2b).$

The second equation over the first quadrant defines the trapezoid with the vertice

$(3b-3a, 0),\quad (2+3b-3a,0),\quad (0, \frac{2+3b-3a}2),\quad(0, \frac{3b-3a}2).$

Since

  • $\ 0 \le 3b-3a\le 3b \le 2+3b-3a,$

  • $\ 0 \le \frac{3b-3a}2 \le 2b \le \frac{2+3b-3a}2,$

then the solution is the simplex with the vertice $(3b-3a, 0),\quad (3b,0),\quad (0,2b),\quad (0, \frac{3b-3a}2).$

Analytically, $$\bigg(x\in\bigg[0,3b\bigg]\bigg)\wedge\bigg(y\in\bigg[\max\left(\frac{3b-3a-x}2,0\right),\frac{6b-2x}3\bigg]\bigg).\tag{4.1}$$

Solution b=1/8, a=1/10

Solution for $\quad a=\dfrac1{10},\quad b=\dfrac18.$

$\color{blue}{\mathbf{Case\,2.2.\quad b\in \bigg[0,\dfrac16\bigg],\quad a\in\bigg[b,\dfrac{2+3b}3\bigg].}}$

The first equation of the system in the form of \begin{cases} 0 \le 2x+3y \le 6b\\ 0\le x+2y \le 2+3b-3a\tag{3.2} \end{cases} over the first quadrant defines the triangle with the vertice $\quad (0,0),\quad (3b,0),\quad (0,2b).$

The second equation over the first quadrant defines the triangle with the vertice

$(0,0),\quad (2+3b-3a,0),\quad (0, \frac{2+3b-3a}2).$

Since

  • equality $2b = \frac{2+3b-3a}2$ takes place if $a=\frac{2-b}3,$
  • equality $3b = 2+3b-3a$ takes place if $a=\frac{2}3,$

then the next cases should be considered.

$$\color{green}{\mathbf{Case\,2.2.1.\quad b\in \left[0,\dfrac16\right],\quad a\in\bigg[b,\dfrac{2-b}3\bigg].}}$$

Solution is the triangle with the vertice $\quad (0,0),\quad (3b,0),\quad (0,2b).$

Analytically, $$\bigg(x\in\bigg[0,3b\bigg]\bigg)\wedge\bigg(y\in\bigg[0, \frac{6b-2x}3\bigg]\bigg).\tag{4.2.1}$$

Solution b=1/8, 1/8 <= a <= 5/8

Solution for $\quad a\in\bigg[\dfrac1{8},\dfrac58\bigg],\quad b=\dfrac18.$

$$\color{green}{\mathbf{Case\,2.2.2.\quad b\in \left[0,\dfrac16\right],\quad a\in\bigg[\dfrac{2-b}3,\dfrac23\bigg].}}$$

The lines $2x+3y=6b$ and $x+2y = 2+3b-3a$ have intersection at the point $(x_i,y_i) = (9a+3b-6, 4-6a).$

Solution is the simplex with the vertice $\quad (0,0),\quad (3b,0),\quad (9a+3b-6, 4-6a),\quad (0,\frac{2+3b-3a}2).$

Analytically, $$\bigg(x\in\bigg[0,3b\bigg]\bigg)\wedge\bigg(y\in\bigg[0, \min\left(\frac{2+3b-3a-x}2,\frac{6b-2x}3\right)\bigg]\bigg).\tag{4.2.2}$$

Solution b=1/8, a = 9/14

Solution for $\quad a = \dfrac{9}{14},\quad b=\dfrac18.$

$$\color{green}{\mathbf{Case\,2.2.3.\quad b\in \left[0,\dfrac16\right],\quad a\in\bigg[\dfrac23,\dfrac{2+3b}3\bigg].}}$$

Solution is the triangle with the vertice $\quad (0,0),\quad (2+3b-3a,0),\quad (0,\frac{2+3b-3a}2).$

Analytically, $$\bigg(x\in\bigg[0,2+3b-3a\bigg]\bigg)\wedge\bigg(y\in\bigg[0, \frac{2+3b-3a-x}2\bigg]\bigg).\tag{4.2.3}$$

Solution b=1/8, a=17/24

Solution for $\quad a = \dfrac{17}{24},\quad b=\dfrac18.$

$\color{blue}{\mathbf{Case\,2.3.\quad b\in \bigg[\dfrac16,\dfrac13\bigg],\quad a\in\bigg[0,b\bigg].}}$

The first equation of the system in the form of \begin{cases} 6b-1 \le 2x+3y \le 6b\\ 3b-3a\le x+2y \le 2+3b-3a\tag{3.3} \end{cases} over the first quadrant defines the trapezoid with the vertice $\quad (\frac{6b-1}2,0),\quad (3b,0),\quad (0,2b),\quad (0,\frac{6b-1}3).$

The second equation over the first quadrant defines the trapezoid with the vertice

$(3b-3a, 0),\quad (2+3b-3a,0),\quad (0, \frac12(2+3b-3a)),\quad (0, \frac12(3b-3a)).$

Since

  • equality $\frac{6b-1}3 = \frac{3b-3a}2$ takes place if $a=\frac{2-3b}9,$
  • equality $\frac{6b-1}2 = 3b-3a$ takes place if $a=\frac16,$

then the next cases should be considered.

$$\color{green}{\mathbf{Case\,2.3.1.\quad b\in \left[\dfrac16,\dfrac13\right],\quad a\in\bigg[0,\dfrac{2-3b}9\bigg].}}$$

Solution is the simplex with the vertice

$(3b-3a,0),\quad (3b, 0),\quad (0,2b),\quad (0, \frac{3b-3a}2).$

Analytically, $$\bigg(x\in\bigg[0,3b\bigg]\bigg)\wedge\bigg(y\in\bigg[\max\left(\frac{3b-3a-x}2,0\right),\frac{6b-2x}3\bigg]\bigg).\tag{4.3.1}$$

Solution b=1/4, a=1/12

Solution for $\quad a=\dfrac1{12},\quad b=\dfrac14.$

$$\color{green}{\mathbf{Case\,2.3.2.\quad b\in \left[\dfrac16,\dfrac13\right],\quad a\in\bigg[\dfrac{2-3b}9,\dfrac16\bigg].}}$$

The lines $2x+3y=6b-1$ and $x+2y = 3b-3a$ have intersection at the point $(x_i,y_i) = (9a+3b-2,1-6a).$

Solution is the simplex with the vertice

$(3b-3a,0),\quad (3b, 0),\quad (0,2b),\quad (0, \frac{6b-1}3),\quad (9a+3b-2,1-6a).$

Analytically, $${\small\bigg(x\in\bigg[0,3b\bigg]\bigg)\wedge\bigg(y\in\bigg[\max\left(\frac{6b-1-2x}3, \frac{3b-3a-x}2,0\right),\frac{6b-2x}3\bigg]\bigg)}.\tag{4.3.2}$$

Solution b=1/4, a=3/19

Solution for $\quad a=\dfrac3{19},\quad b=\dfrac14.$

$$\color{green}{\mathbf{Case\,2.3.3.\quad b\in \left[\dfrac16,\dfrac13\right],\quad a\in\bigg[\dfrac16,b\bigg].}}$$

Solution is the trapezoid with the vertice

$(3b,0),\quad (3b-3a, 0),\quad (0, \frac{3b-3a}2),\quad (0,2b).$

Analytically, $$\bigg(x\in\bigg[0,3b\bigg]\bigg)\wedge\bigg(y\in\bigg[\max\left(\frac{6b-1-2x}3,0\right),\frac{6b-2x}3\bigg]\bigg).\tag{4.3.3}$$

Solution b=1/4, a=1/5

Solution for $\quad a=\dfrac15,\quad b=\dfrac14.$

$\color{blue}{\mathbf{Case\,2.4.\quad b\in \left[\dfrac16,\dfrac13\right],\quad a\in\bigg[b,b+\dfrac23\bigg].}}$

The first equation of the system in the form of \begin{cases} 6b-1 \le 2x+3y \le 6b\\ 0 \le x+2y \le 2+3b-3a\tag{3.4} \end{cases}

over the first quadrant defines the trapezoid with the vertice $\quad (\frac{6b-1}2,0),\quad (3b,0),\quad (0,2b),\quad (0,\frac{6b-1}3).$

The second equation over the first quadrant defines the triangle with the vertice

$(0,0),\quad (2+3b-3a,0),\quad (0, \frac{2+3b-3a}2).$

Since

  • equality $2b = \frac{2+3b-3a}2$ takes place if $a=\frac{2-b}3,$

  • equlaity $3b = 2+3b-3a$ takes place if $a = \frac23,$

  • equaity $\frac{6b-1}3 = \frac{2+3b-3a}2$ takes place if $a=\frac{8-3b}9,$

  • equaity $\frac{6b-1}2 = 2+3b-3a$ takes place if $a=\frac56,$

then the next cases should be considered.

$$\color{green}{\mathbf{Case\,2.4.1.\quad b\in \left[\dfrac16,\dfrac13\right],\quad a\in\bigg[0,\dfrac{2-b}3\bigg].}}$$

Solution is the trapezoid from the paragraph $2.3.3$ above.

$$\color{green}{\mathbf{Case\,2.4.2.\quad b\in \left[\dfrac16,\dfrac13\right],\quad a\in\bigg[\dfrac{2-b}3,\dfrac23 \bigg].}}$$

The lines $2x+3y=6b$ and $x+2y = 2+3b-3a$ have intersection at the point $(x_i,y_i) = (9a+3b-6,4-6a).$

Solution is the simplex with the vertice

$(\frac{6b-1}2,0),\quad (3b, 0),\quad (9a+3b-6,4-6a),\quad (0,\frac{2+3b-3a}2),\quad (0, \frac{6b-1}3).$

Analytically, $${\small\bigg(x\in\bigg[0,3b\bigg]\bigg)\wedge\bigg(y\in\bigg[\max\left(\frac{6b-1-2x}3,0\right),\min\left(\frac{2+3b-3a-x}2,\frac{6b-2x}3\right)\bigg]\bigg)}.\tag{4.4.2}$$

Solution b=1/4, a=5/8

Solution for $\quad a=\dfrac58,\quad b=\dfrac14.$

$$\color{green}{\mathbf{Case\,2.4.3.\quad b\in \left[\dfrac16,\dfrac13\right],\quad a\in\bigg[\dfrac23,\dfrac{8-3b}9 \bigg].}}$$

Solution is the simplex with the vertice

$(\frac{6b-1}2,0),\quad (2+3b-3a, 0),\quad (0,\frac{2+3b-3a}2),\quad (0, \frac{6b-1}3).$

Analytically, $${\small\bigg(x\in\bigg[0,2+3b-3a\bigg]\bigg)\wedge\bigg(y\in\bigg[\max\left(\frac{6b-1-2x}3,0\right),\frac{2+3b-3a-x}2\bigg]\bigg)}.\tag{4.4.3}$$

Solution b=1/4, a=3/4

Solution for $\quad a=\dfrac34,\quad b=\dfrac14.$

$$\color{green}{\mathbf{Case\,2.4.4.\quad b\in \left[\dfrac16,\dfrac13\right],\quad a\in\bigg[\dfrac{8-3b}9,\dfrac56 \bigg].}}$$

The lines $2x+3y=6b-1$ and $x+2y = 2+3b-3a$ have intersection at the point $(x_i,y_i) = (9a+3b-8,5-6a).$

Solution is the triangle with the vertice

$(\frac{6b-1}2,0),\quad (2+3b-3a, 0),\quad (9a+3b-8,5-6a).$

Analytically, $${\small (x\in[9a+3b-8,2+3b-3a])\wedge\bigg(y\in\bigg[\max\left(\frac{6b-1-2x}3,0\right),\frac{2+3b-3a-x}2\bigg]\bigg)}.\tag{4.4.4}$$

Solution b=1/4, a=14/17

Solution for $\quad a=\dfrac{14}{17},\quad b=\dfrac14.$