Sort a pandas Series by the index

There is only 1 'column' of values. The first 'column' is the index. Docs are here

In [8]: s = Series([3,2,1],index=[1,3,2])

In [9]: s
Out[9]: 
1    3
3    2
2    1
dtype: int64

Sort by the index

In [10]: s.sort_index()
Out[10]: 
1    3
2    1
3    2
dtype: int64

Sort by values

In [11]: s.sort_values()
Out[11]: 
2    1
3    2
1    3
dtype: int64

You need to convert your index to an object index, because it's currently sorting lexicographically, not numerically:

In [97]: s = read_clipboard(header=None)

In [98]: news = s.rename(columns=lambda x: ['Region', 'data'][x])

In [99]: news
Out[99]:
   Region  data
0       0     8
1       1    25
2      11     1
3       2    41
4       3    23
5       4    15
6       5    35
7       6    24
8       7    27
9       8    50
10      9    55
11      N    10

In [100]: news_converted = news.convert_objects(convert_numeric=True)

In [101]: news_converted
Out[101]:
    Region  data
0        0     8
1        1    25
2       11     1
3        2    41
4        3    23
5        4    15
6        5    35
7        6    24
8        7    27
9        8    50
10       9    55
11     NaN    10

In [102]: news_converted.loc[11, 'Region'] = 'N'

In [103]: news_converted_with_index = news_converted.set_index('Region')

In [104]: news_converted_with_index
Out[104]:
        data
Region
0.0        8
1.0       25
11.0       1
2.0       41
3.0       23
4.0       15
5.0       35
6.0       24
7.0       27
8.0       50
9.0       55
N         10

In [105]: news_converted_with_index.sort_index()
Out[105]:
        data
Region
0.0        8
1.0       25
2.0       41
3.0       23
4.0       15
5.0       35
6.0       24
7.0       27
8.0       50
9.0       55
11.0       1
N         10

There's most likely a better way to create your Series so that it doesn't mix index types.


You are looking for sort_index:

In [80]: b.sort_values()
Out[80]: 
6     1
11    2
9     2
1     4
10    4
2     5
3     6
4     7
8     8
5     9
dtype: int64

In [81]: b.sort_index()
Out[81]: 
1     4
2     5
3     6
4     7
5     9
6     1
8     8
9     2
10    4
11    2
dtype: int64