Speed in Matlab vs. Julia vs. Fortran
What @Ian Bush says in his answer about the dual precision is correct. Moreover,
You will likely not need
openmp
for the kind of parallelization you have done in your code. The Fortran's intrinsicdo concurrent()
will automatically parallelize the loop for you (when the code is compiled with the parallel flag of the respective compiler).Also, the
where elsewhere
construct is slow as it often requires the creation of a logical mask array and then applying it in a do-loop. You can usedo concurrent()
in place ofwhere
to both avoid the extra temporary array creation and parallelize the computation on multiple cores.Also, when comparing 64bit precision numbers, it's good to make sure both values are the same type and kind to avoid an implicit type/kind conversion before the comparison is made.
Also, the calculation of
a_grid(i) - a_grid/R
in computing thec
array is redundant and can be avoided in the subsequent line.
Here is the modified optimized parallel Fortran code without any OpenMP,
module mod_calc
use iso_fortran_env, only: dp => real64
implicit none
integer, parameter :: len = 1001
public :: dp, len
contains
subroutine linspace(from, to, array)
real(dp), intent(in) :: from, to
real(dp), intent(out) :: array(:)
real(dp) :: range
integer :: n, i
n = size(array)
range = to - from
if (n == 0) return
if (n == 1) then
array(1) = from
return
end if
do concurrent(i=1:n)
array(i) = from + range * (i - 1) / (n - 1)
end do
end subroutine
subroutine calc_val()
implicit none
real(dp) :: bbeta, sigma, R, zeta, tol, test
real(dp) :: a_grid(len), V_mat(len,2), V_last(len,2), u(len,len,2), c(len,len,2)
integer :: outeriter, i, j, k, sss, next_mat(2,len), fu
character(len=*), parameter :: FILE_NAME = 'data.txt' ! File name.
call linspace(from=0._dp, to=100._dp, array=a_grid)
bbeta = 0.98_dp
sigma = 0.5_dp
R = 1.0_dp/0.98_dp
zeta = 1.0_dp - 1.0_dp/sigma
tol = 1e-4_dp
test = 1000.0_dp
outeriter = 0
do concurrent(i=1:len)
c(1:len,i,2) = a_grid(i) - a_grid/R
c(1:len,i,1) = c(1:len,i,2) + 20.0_dp
end do
u = c**zeta * 1.0_dp/zeta
do concurrent(i=1:len, j=1:len, k=1:2)
if (c(i,j,k)<=0._dp) u(i,j,k) = -1e6_dp
end do
V_mat = 0.0_dp
next_mat = 0.0_dp
do while (test>tol .and. outeriter<20000)
outeriter = outeriter + 1
V_last = V_mat
do concurrent(i=1:len)
V_mat(i,1) = maxval(u(:,i,1) + bbeta*V_last(:, 2))
next_mat(i,1) = maxloc(u(:,i,1) + bbeta*V_last(:, 2),1)
V_mat(i,2) = maxval(u(:,i,2) + bbeta*V_last(:, 1))
next_mat(i,2) = maxloc(u(:,i,2) + bbeta*V_last(:, 1),1)
end do
test = maxval(abs(log(V_last/V_mat)))
end do
Write( *, * ) test
end subroutine
end module mod_calc
program main
use mod_calc
implicit none
integer:: clck_counts_beg,clck_rate,clck_counts_end
call system_clock ( clck_counts_beg, clck_rate )
call calc_val()
call system_clock ( clck_counts_end, clck_rate )
write (*, '("Time = ",f6.3," seconds.")') (clck_counts_end - clck_counts_beg) / real(clck_rate)
end program main
Compiling your original code with /standard-semantics /F0x1000000000 /O3 /Qip /Qipo /Qunroll /Qunroll-aggressive /inline:all /Ob2 /Qparallel
Intel Fortran compiler flags, yields the following timing,
original.exe
Time = 37.284 seconds.
compiling and running the parallel concurrent Fortran code in the above (on at most 4 cores, if any at all is used) yields,
concurrent.exe
Time = 0.149 seconds.
For comparison, this MATLAB's timing,
Value Function converged in 362 steps.
Elapsed time is 3.575691 seconds.
One last tip: There are several vectorized array computations and loops in the above code that can still be merged together to even further improve the speed of your Fortran code. For example,
u = c**zeta * 1.0_dp/zeta
do concurrent(i=1:len, j=1:len, k=1:2)
if (c(i,j,k)<=0._dp) u(i,j,k) = -1e6_dp
end do
in the above code can be all merged with the do concurrent
loop appearing before it,
do concurrent(i=1:len)
c(1:len,i,2) = a_grid(i) - a_grid/R
c(1:len,i,1) = c(1:len,i,2) + 20.0_dp
end do
If you decide to do so, then you can define an auxiliary variable inverse_zeta = 1.0_dp / zeta
to use in the computation of u
inside the loop instead of using * 1.0_dp / zeta
, thus avoiding the extra division (which is more costly than multiplication), without degrading the readability of the code.
The reason the fortran is so slow is that it is using quadruple precision - I don't know Julia or Matlab but it looks as though double precision is being used in that case. Further as noted in the comments some of the loop orders are incorrect for Fortran, and also you are not consistent in your use of precision in the Fortran code, most of your constants are single precision. Correcting all these leads to the following:
- Original: test = 9.83440674663232047922921588613472439E-0005 Time = 31.413 seconds.
- Optimised: test = 9.8343643237979391E-005 Time = 0.912 seconds.
Note I have turned off parallelisation for these, all results are single threaded. Code is below:
module mod_calc
!!$ use omp_lib
implicit none
!!$ integer, parameter :: dp = selected_real_kind(33,4931), len = 1001
integer, parameter :: dp = selected_real_kind(15), len = 1001
public :: dp, len
contains
subroutine linspace(from, to, array)
real(dp), intent(in) :: from, to
real(dp), intent(out) :: array(:)
real(dp) :: range
integer :: n, i
n = size(array)
range = to - from
if (n == 0) return
if (n == 1) then
array(1) = from
return
end if
do i=1, n
array(i) = from + range * (i - 1) / (n - 1)
end do
end subroutine
subroutine calc_val()
real(dp):: bbeta, sigma, R, zeta, tol, test
real(dp):: a_grid(len), V_mat(len,2), V_last(len,2), &
u(len,len,2), c(len,len,2)
integer :: outeriter, i, sss, next_mat(2,len), fu
character(len=*), parameter :: FILE_NAME = 'data.txt' ! File name.
call linspace(from=0._dp, to=100._dp, array=a_grid)
bbeta = 0.98_dp
sigma = 0.5_dp
R = 1.0_dp/0.98_dp
zeta = 1.0_dp - 1.0_dp/sigma
tol = 1e-4_dp
test = 1000.0_dp
outeriter = 0
do i = 1,len
c(:,i,1) = a_grid(i) - a_grid/R + 20.0_dp
c(:,i,2) = a_grid(i) - a_grid/R
end do
u = c**zeta * 1.0_dp/zeta
where (c<=0)
u = -1e6_dp
end where
V_mat = 0.0_dp
next_mat = 0.0_dp
do while (test>tol .and. outeriter<20000)
outeriter = outeriter+1
V_last = V_mat
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(V_mat, next_mat,V_last, u, bbeta) &
!$OMP PRIVATE(i)
!$OMP DO SCHEDULE(static)
do i=1,len
V_mat(i,1) = maxval(u(:,i,1) + bbeta*V_last(:, 2))
next_mat(i,1) = maxloc(u(:,i,1) + bbeta*V_last(:, 2),1)
V_mat(i,2) = maxval(u(:,i,2) + bbeta*V_last(:, 1))
next_mat(i,2) = maxloc(u(:,i,2) + bbeta*V_last(:, 1),1)
end do
!$OMP END DO
!$OMP END PARALLEL
test = maxval(abs(log(V_last/V_mat)))
end do
Write( *, * ) test
end subroutine
end module mod_calc
program main
use mod_calc
implicit none
integer:: clck_counts_beg,clck_rate,clck_counts_end
!!$ call omp_set_num_threads(2)
call system_clock ( clck_counts_beg, clck_rate )
call calc_val()
call system_clock ( clck_counts_end, clck_rate )
write (*, '("Time = ",f6.3," seconds.")') (clck_counts_end - clck_counts_beg) / real(clck_rate)
end program main
Compilation / linking:
ian@eris:~/work/stack$ gfortran --version
GNU Fortran (Ubuntu 7.4.0-1ubuntu1~18.04.1) 7.4.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
ian@eris:~/work/stack$ gfortran -Wall -Wextra -O3 jul.f90
jul.f90:36:48:
character(len=*), parameter :: FILE_NAME = 'data.txt' ! File name.
1
Warning: Unused parameter ‘file_name’ declared at (1) [-Wunused-parameter]
jul.f90:35:57:
integer :: outeriter, i, sss, next_mat(2,len), fu
1
Warning: Unused variable ‘fu’ declared at (1) [-Wunused-variable]
jul.f90:35:36:
integer :: outeriter, i, sss, next_mat(2,len), fu
1
Warning: Unused variable ‘sss’ declared at (1) [-Wunused-variable]
Running:
ian@eris:~/work/stack$ ./a.out
9.8343643237979391E-005
Time = 0.908 seconds.