Speed up bitstring/bit operations in Python?

There are a couple of small optimizations for your version. By reversing the roles of True and False, you can change "if flags[i] is False:" to "if flags[i]:". And the starting value for the second range statement can be i*i instead of i*3. Your original version takes 0.166 seconds on my system. With those changes, the version below takes 0.156 seconds on my system.

def prime_numbers(limit=1000000):
    '''Prime number generator. Yields the series
    2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ...
    using Sieve of Eratosthenes.
    '''
    yield 2
    sub_limit = int(limit**0.5)
    flags = [True, True] + [False] * (limit - 2)
    # Step through all the odd numbers
    for i in range(3, limit, 2):
        if flags[i]:
            continue
        yield i
        # Exclude further multiples of the current prime number
        if i <= sub_limit:
            for j in range(i*i, limit, i<<1):
                flags[j] = True

This doesn't help your memory issue, though.

Moving into the world of C extensions, I used the development version of gmpy. (Disclaimer: I'm one of the maintainers.) The development version is called gmpy2 and supports mutable integers called xmpz. Using gmpy2 and the following code, I have a running time of 0.140 seconds. Running time for a limit of 1,000,000,000 is 158 seconds.

import gmpy2

def prime_numbers(limit=1000000):
    '''Prime number generator. Yields the series
    2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ...
    using Sieve of Eratosthenes.
    '''
    yield 2
    sub_limit = int(limit**0.5)
    # Actual number is 2*bit_position + 1.
    oddnums = gmpy2.xmpz(1)
    current = 0
    while True:
        current += 1
        current = oddnums.bit_scan0(current)
        prime = 2 * current + 1
        if prime > limit:
            break
        yield prime
        # Exclude further multiples of the current prime number
        if prime <= sub_limit:
            for j in range(2*current*(current+1), limit>>1, prime):
                oddnums.bit_set(j)

Pushing optimizations, and sacrificing clarity, I get running times of 0.107 and 123 seconds with the following code:

import gmpy2

def prime_numbers(limit=1000000):
    '''Prime number generator. Yields the series
    2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ...
    using Sieve of Eratosthenes.
    '''
    yield 2
    sub_limit = int(limit**0.5)
    # Actual number is 2*bit_position + 1.
    oddnums = gmpy2.xmpz(1)
    f_set = oddnums.bit_set
    f_scan0 = oddnums.bit_scan0
    current = 0
    while True:
        current += 1
        current = f_scan0(current)
        prime = 2 * current + 1
        if prime > limit:
            break
        yield prime
        # Exclude further multiples of the current prime number
        if prime <= sub_limit:
            list(map(f_set,range(2*current*(current+1), limit>>1, prime)))

Edit: Based on this exercise, I modified gmpy2 to accept xmpz.bit_set(iterator). Using the following code, the run time for all primes less 1,000,000,000 is 56 seconds for Python 2.7 and 74 seconds for Python 3.2. (As noted in the comments, xrange is faster than range.)

import gmpy2

try:
    range = xrange
except NameError:
    pass

def prime_numbers(limit=1000000):
    '''Prime number generator. Yields the series
    2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ...
    using Sieve of Eratosthenes.
    '''
    yield 2
    sub_limit = int(limit**0.5)
    oddnums = gmpy2.xmpz(1)
    f_scan0 = oddnums.bit_scan0
    current = 0
    while True:
        current += 1
        current = f_scan0(current)
        prime = 2 * current + 1
        if prime > limit:
            break
        yield prime
        if prime <= sub_limit:
            oddnums.bit_set(iter(range(2*current*(current+1), limit>>1, prime)))

Edit #2: One more try! I modified gmpy2 to accept xmpz.bit_set(slice). Using the following code, the run time for all primes less 1,000,000,000 is about 40 seconds for both Python 2.7 and Python 3.2.

from __future__ import print_function
import time
import gmpy2

def prime_numbers(limit=1000000):
    '''Prime number generator. Yields the series
    2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ...
    using Sieve of Eratosthenes.
    '''
    yield 2
    sub_limit = int(limit**0.5)
    flags = gmpy2.xmpz(1)
    # pre-allocate the total length
    flags.bit_set((limit>>1)+1)
    f_scan0 = flags.bit_scan0
    current = 0
    while True:
        current += 1
        current = f_scan0(current)
        prime = 2 * current + 1
        if prime > limit:
            break
        yield prime
        if prime <= sub_limit:
            flags.bit_set(slice(2*current*(current+1), limit>>1, prime))

start = time.time()
result = list(prime_numbers(1000000000))
print(time.time() - start)

Edit #3: I've updated gmpy2 to properly support slicing at the bit level of an xmpz. No change in performance but a much nice API. I have done a little tweaking and I've got the time down to about 37 seconds. (See Edit #4 to changes in gmpy2 2.0.0b1.)

from __future__ import print_function
import time
import gmpy2

def prime_numbers(limit=1000000):
    '''Prime number generator. Yields the series
    2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ...
    using Sieve of Eratosthenes.
    '''
    sub_limit = int(limit**0.5)
    flags = gmpy2.xmpz(1)
    flags[(limit>>1)+1] = True
    f_scan0 = flags.bit_scan0
    current = 0
    prime = 2
    while prime <= sub_limit:
        yield prime
        current += 1
        current = f_scan0(current)
        prime = 2 * current + 1
        flags[2*current*(current+1):limit>>1:prime] = True
    while prime <= limit:
        yield prime
        current += 1
        current = f_scan0(current)
        prime = 2 * current + 1

start = time.time()
result = list(prime_numbers(1000000000))
print(time.time() - start)

Edit #4: I made some changes in gmpy2 2.0.0b1 that break the previous example. gmpy2 no longer treats True as a special value that provides an infinite source of 1-bits. -1 should be used instead.

from __future__ import print_function
import time
import gmpy2

def prime_numbers(limit=1000000):
    '''Prime number generator. Yields the series
    2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ...
    using Sieve of Eratosthenes.
    '''
    sub_limit = int(limit**0.5)
    flags = gmpy2.xmpz(1)
    flags[(limit>>1)+1] = 1
    f_scan0 = flags.bit_scan0
    current = 0
    prime = 2
    while prime <= sub_limit:
        yield prime
        current += 1
        current = f_scan0(current)
        prime = 2 * current + 1
        flags[2*current*(current+1):limit>>1:prime] = -1
    while prime <= limit:
        yield prime
        current += 1
        current = f_scan0(current)
        prime = 2 * current + 1

start = time.time()
result = list(prime_numbers(1000000000))
print(time.time() - start)

Edit #5: I've made some enhancements to gmpy2 2.0.0b2. You can now iterate over all the bits that are either set or clear. Running time has improved by ~30%.

from __future__ import print_function
import time
import gmpy2

def sieve(limit=1000000):
    '''Returns a generator that yields the prime numbers up to limit.'''

    # Increment by 1 to account for the fact that slices do not include
    # the last index value but we do want to include the last value for
    # calculating a list of primes.
    sieve_limit = gmpy2.isqrt(limit) + 1
    limit += 1

    # Mark bit positions 0 and 1 as not prime.
    bitmap = gmpy2.xmpz(3)

    # Process 2 separately. This allows us to use p+p for the step size
    # when sieving the remaining primes.
    bitmap[4 : limit : 2] = -1

    # Sieve the remaining primes.
    for p in bitmap.iter_clear(3, sieve_limit):
        bitmap[p*p : limit : p+p] = -1

    return bitmap.iter_clear(2, limit)

if __name__ == "__main__":
    start = time.time()
    result = list(sieve(1000000000))
    print(time.time() - start)
    print(len(result))

OK, so this is my second answer, but as speed is of the essence I thought that I had to mention the bitarray module - even though it's bitstring's nemesis :). It's ideally suited to this case as not only is it a C extension (and so faster than pure Python has a hope of being), but it also supports slice assignments.

I haven't even tried to optimise this, I just rewrote the bitstring version. On my machine I get 0.16 seconds for primes under a million.

For a billion, it runs perfectly well and completes in 2 minutes 31 seconds.

import bitarray

def prime_bitarray(limit=1000000):
    yield 2
    flags = bitarray.bitarray(limit)
    flags.setall(False)
    sub_limit = int(limit**0.5)
    for i in range(3, limit, 2):
        if not flags[i]:
            yield i
            if i <= sub_limit:
                flags[3*i:limit:i*2] = True