Split a given std::variant type by a given criteria
With Boost.Mp11, this is a short one-liner (as always):
using V1 = mp_filter<std::is_arithmetic, V>;
using V2 = mp_remove_if<V, std::is_arithmetic>;
You can also use:
using V1 = mp_copy_if<V, std::is_arithmetic>;
to make the two more symmetric.
Alternatively,
using P = mp_partition<V, std::is_arithmetic>;
using V1 = mp_first<P>;
using V2 = mp_second<P>;
If for whatever reason you don't want to use Barry's short and reasonable answer, here is one that is neither (thanks @xskxzr for removing the awkward "bootstrap" specialization, and to @max66 for warning me against the empty variant corner case):
namespace detail {
template <class V>
struct convert_empty_variant {
using type = V;
};
template <>
struct convert_empty_variant<std::variant<>> {
using type = std::variant<std::monostate>;
};
template <class V>
using convert_empty_variant_t = typename convert_empty_variant<V>::type;
template <class V1, class V2, template <class> class Predicate, class V>
struct split_variant;
template <class V1, class V2, template <class> class Predicate>
struct split_variant<V1, V2, Predicate, std::variant<>> {
using matching = convert_empty_variant_t<V1>;
using non_matching = convert_empty_variant_t<V2>;
};
template <class... V1s, class... V2s, template <class> class Predicate, class Head, class... Tail>
struct split_variant<std::variant<V1s...>, std::variant<V2s...>, Predicate, std::variant<Head, Tail...>>
: std::conditional_t<
Predicate<Head>::value,
split_variant<std::variant<V1s..., Head>, std::variant<V2s...>, Predicate, std::variant<Tail...>>,
split_variant<std::variant<V1s...>, std::variant<V2s..., Head>, Predicate, std::variant<Tail...>>
> { };
}
template <class V, template <class> class Predicate>
using split_variant = detail::split_variant<std::variant<>, std::variant<>, Predicate, V>;
See it live on Wandbox
EDIT Given that a empty variant (std::variant<>
) is ill formed (according cppreference) and that should be used std::variant<std::monostate>
instead, I've modified the answer (added a tuple2variant()
specialization for empty tuple) to support the case when the list of types for V1
or V2
is empty.
It's a little decltype()
delirium but... if you declare a helper filter couple of function as follows
template <bool B, typename T>
constexpr std::enable_if_t<B == std::is_arithmetic_v<T>, std::tuple<T>>
filterArithm ();
template <bool B, typename T>
constexpr std::enable_if_t<B != std::is_arithmetic_v<T>, std::tuple<>>
filterArithm ();
and a tuple to variant function (with a specialization for empty tuples, to avoid a empty std::variant
)
std::variant<std::monostate> tuple2variant (std::tuple<> const &);
template <typename ... Ts>
std::variant<Ts...> tuple2variant (std::tuple<Ts...> const &);
your class simply (?) become
template <typename ... Ts>
struct TheAnswer<std::variant<Ts...>>
{
using V1 = decltype(tuple2variant(std::declval<
decltype(std::tuple_cat( filterArithm<true, Ts>()... ))>()));
using V2 = decltype(tuple2variant(std::declval<
decltype(std::tuple_cat( filterArithm<false, Ts>()... ))>()));
};
If you want something more generic (if you want to pass std::arithmetic
as a template parameter), you can modify the filterArithm()
function passing a template-template filter parameter F
(renamed filterType()
)
template <template <typename> class F, bool B, typename T>
constexpr std::enable_if_t<B == F<T>::value, std::tuple<T>>
filterType ();
template <template <typename> class F, bool B, typename T>
constexpr std::enable_if_t<B != F<T>::value, std::tuple<>>
filterType ();
The TheAnswer
class become
template <typename, template <typename> class>
struct TheAnswer;
template <typename ... Ts, template <typename> class F>
struct TheAnswer<std::variant<Ts...>, F>
{
using V1 = decltype(tuple2variant(std::declval<decltype(
std::tuple_cat( filterType<F, true, Ts>()... ))>()));
using V2 = decltype(tuple2variant(std::declval<decltype(
std::tuple_cat( filterType<F, false, Ts>()... ))>()));
};
and the TA
declaration take also std::is_arithmetic
using TA = TheAnswer<std::variant<bool, char, std::string, int, float,
double, std::vector<int>>,
std::is_arithmetic>;
The following is a full compiling example with std::is_arithmetic
as parameter and a V2
empty case
#include <tuple>
#include <string>
#include <vector>
#include <variant>
#include <type_traits>
std::variant<std::monostate> tuple2variant (std::tuple<> const &);
template <typename ... Ts>
std::variant<Ts...> tuple2variant (std::tuple<Ts...> const &);
template <template <typename> class F, bool B, typename T>
constexpr std::enable_if_t<B == F<T>::value, std::tuple<T>>
filterType ();
template <template <typename> class F, bool B, typename T>
constexpr std::enable_if_t<B != F<T>::value, std::tuple<>>
filterType ();
template <typename, template <typename> class>
struct TheAnswer;
template <typename ... Ts, template <typename> class F>
struct TheAnswer<std::variant<Ts...>, F>
{
using V1 = decltype(tuple2variant(std::declval<decltype(
std::tuple_cat( filterType<F, true, Ts>()... ))>()));
using V2 = decltype(tuple2variant(std::declval<decltype(
std::tuple_cat( filterType<F, false, Ts>()... ))>()));
};
int main ()
{
using TA = TheAnswer<std::variant<bool, char, std::string, int, float,
double, std::vector<int>>,
std::is_arithmetic>;
using TB = TheAnswer<std::variant<bool, char, int, float, double>,
std::is_arithmetic>;
using VA1 = std::variant<bool, char, int, float, double>;
using VA2 = std::variant<std::string, std::vector<int>>;
using VB1 = VA1;
using VB2 = std::variant<std::monostate>;
static_assert( std::is_same_v<VA1, TA::V1> );
static_assert( std::is_same_v<VA2, TA::V2> );
static_assert( std::is_same_v<VB1, TB::V1> );
static_assert( std::is_same_v<VB2, TB::V2> );
}