SQL-like window functions in PANDAS: Row Numbering in Python Pandas Dataframe

you can also use sort_values(), groupby() and finally cumcount() + 1:

df['RN'] = df.sort_values(['data1','data2'], ascending=[True,False]) \
             .groupby(['key1']) \
             .cumcount() + 1
print(df)

yields:

   data1  data2 key1  RN
0      1      1    a   1
1      2     10    a   2
2      2      2    a   3
3      3      3    b   1
4      3     30    a   4

PS tested with pandas 0.18


You can do this by using groupby twice along with the rank method:

In [11]: g = df.groupby('key1')

Use the min method argument to give values which share the same data1 the same RN:

In [12]: g['data1'].rank(method='min')
Out[12]:
0    1
1    2
2    2
3    1
4    4
dtype: float64

In [13]: df['RN'] = g['data1'].rank(method='min')

And then groupby these results and add the rank with respect to data2:

In [14]: g1 = df.groupby(['key1', 'RN'])

In [15]: g1['data2'].rank(ascending=False) - 1
Out[15]:
0    0
1    0
2    1
3    0
4    0
dtype: float64

In [16]: df['RN'] += g1['data2'].rank(ascending=False) - 1

In [17]: df
Out[17]:
   data1  data2 key1  RN
0      1      1    a   1
1      2     10    a   2
2      2      2    a   3
3      3      3    b   1
4      3     30    a   4

It feels like there ought to be a native way to do this (there may well be!...).


Use groupby.rank function. Here the working example.

df = pd.DataFrame({'C1':['a', 'a', 'a', 'b', 'b'], 'C2': [1, 2, 3, 4, 5]})
df

C1 C2
a  1
a  2
a  3
b  4
b  5

df["RANK"] = df.groupby("C1")["C2"].rank(method="first", ascending=True)
df

C1 C2 RANK
a  1  1
a  2  2
a  3  3
b  4  1
b  5  2