Square detection in image
Sharpen square edges. Load the image, convert to grayscale, median blur to smooth, and sharpen to enhance edges.
Obtain binary image and remove noise. We threshold to obtain a black/white binary image. Depending on the image, Otsu's thresholding or adaptive thresholding would work. From here we create a rectangular kernel and perform morphological transformations to remove noise and enhance the square contours.
Detect and extract squares. Next we find contours and filter using minimum/maximum threshold area. Any contours that pass our filter will be our squares so to extract each ROI, we obtain the bounding rectangle coordinates, crop using Numpy slicing, and save each square image.
Sharpen image with
cv2.filter2D()
using a generic sharpening kernel, other kernels can be found here.
Now threshold to get a binary image
There's little particles of noise so to remove them, we perform morphological operations
Next find contours and filter using cv2.contourArea()
with minimum/maximum threshold values.
We can crop each desired square region using Numpy slicing and save each ROI like this
x,y,w,h = cv2.boundingRect(c)
ROI = image[y:y+h, x:x+w]
cv2.imwrite('ROI_{}.png'.format(image_number), ROI)
import cv2
import numpy as np
# Load image, grayscale, median blur, sharpen image
image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.medianBlur(gray, 5)
sharpen_kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
sharpen = cv2.filter2D(blur, -1, sharpen_kernel)
# Threshold and morph close
thresh = cv2.threshold(sharpen, 160, 255, cv2.THRESH_BINARY_INV)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))
close = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
# Find contours and filter using threshold area
cnts = cv2.findContours(close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
min_area = 100
max_area = 1500
image_number = 0
for c in cnts:
area = cv2.contourArea(c)
if area > min_area and area < max_area:
x,y,w,h = cv2.boundingRect(c)
ROI = image[y:y+h, x:x+w]
cv2.imwrite('ROI_{}.png'.format(image_number), ROI)
cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 2)
image_number += 1
cv2.imshow('sharpen', sharpen)
cv2.imshow('close', close)
cv2.imshow('thresh', thresh)
cv2.imshow('image', image)
cv2.waitKey()