$ \sum_{k=2}^{\infty} \left( \frac{1}{k-1} - \frac{1}{k} \right) = 1$
Hint:
hope you can take it from here.
As @CarstenS pointed out the picture shown here is somehow a more correct hint
Note that
$$\begin{align} \sum_{k=2}^K\left(\frac{1}{k-1}-\frac1k\right)&=\left(1-\frac12\right)+\left(\frac12-\frac13\right)+\left(\frac13-\frac14\right)+\cdots +\left(\frac{1}{K-1}-\frac{1}{K}\right)\\\\ &=1-\frac1K \tag 1 \end{align}$$
More formally, note that if $S_K=\sum_{k=2}^K\left(\frac{1}{k-1}-\frac1k\right)$, then $S_{K+1}=S_K+\frac{1}{K}-\frac{1}{K+1}$. So, we can use induction to prove the result given by $(1)$.