$\sum\limits_{n=1}^{\infty}\arctan{\frac{2}{n^2+n+4}}$
Hint:
$$\dfrac2{n^2+n+4}=\dfrac{\dfrac12}{1+\dfrac{n(n+1)}4}=\dfrac{\dfrac{n+1}2-\dfrac n2}{1+\dfrac n2\cdot\dfrac{n+1}2}$$
For the second, $$\dfrac{8n}{n^4-2n^2+5}=\dfrac{\dfrac{(n+1)^2}2-\dfrac{(n-1)^2}2}{\dfrac{(n+1)^2}2\cdot\dfrac{(n-1)^2}2+1}$$